
Advanced Functions and Indexing Techniques by Brudzewsky
Explore progressive set functions and advanced indexing methods presented by Brudzewsky. Dive into lessons on APL, idioms, and without replacement indexing strategies, illustrated through a series of informative slides.
Download Presentation

Please find below an Image/Link to download the presentation.
The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.
You are allowed to download the files provided on this website for personal or commercial use, subject to the condition that they are used lawfully. All files are the property of their respective owners.
The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.
E N D
Presentation Transcript
1 Progressive Set Functions Ad m Brudzewsky
2 Links TryAPL lesson tinyurl.com/vx67y6b APL Cultivation lesson tinyurl.com/to2na6w Anatomy of an Idiom, Bob Smith tinyurl.com/t2f5h9h
3 Index of ( ) L 'abacba' R 'baabaac' L R (L R) a b a c b a b a a b a a c 2 1 1 2 1 1 4
4 Index of ( ) L 'abacba' R 'baabaac' L R (L R) a b a c b a b a a b a a c 2 1 1 2 1 1 4
5 Index of ( ) L 'abacba' R 'baabaac' L R (L R) a b a c b a b a a b a a c 2 1 1 2 1 1 4
6 Index of ( ) L 'abacba' R 'baabaac' L R (L R) a b a c b a b a a b a a c 2 1 1 2 1 1 4
7 Index of ( ) without replacement L 'abacba' R 'baabaac' L R (L R) a b a c b a b a a b a a c
8 Index of ( ) without replacement L 'abacba' R 'baabaac' L R (L R) a b a c b a b a a b a a c 2
9 Index of ( ) without replacement L 'abacba' R 'baabaac' L R (L R) a b a c b a b a a b a a c 2 1
10 Index of ( ) without replacement L 'abacba' R 'baabaac' L R (L R) a b a c b a b a a b a a c 2 1 3
11 Index of ( ) without replacement L 'abacba' R 'baabaac' L R (L R) a b a c b a b a a b a a c 2 1 3 5
12 Index of ( ) without replacement L 'abacba' R 'baabaac' L R (L R) a b a c b a b a a b a a c 2 1 3 5 6
13 Index of ( ) without replacement L 'abacba' R 'baabaac' L R (L R) a b a c b a b a a b a a c 2 1 3 5 6 7
14 Index of ( ) without replacement L 'abacba' R 'baabaac' L R (L R) a b a c b a b a a b a a c 2 1 3 5 6 7 4
15 Index of ( ) without replacement L 'a1' 'b1' 'a2' 'c1' 'b2' 'a3' R 'b1' 'a1' 'a2' 'b2' 'a3' 'a4' 'c1' L R 2 1 3 5 6 7 4
16 Labelling L (L L) a b a c b a 1 2 1 4 2 1 R (R R) b a a b a a c 1 2 2 1 2 2 7
17 Labelling (the ranking function) L (L L) ( L L) a b a c b a 1 2 1 4 2 1 1 4 2 6 5 3
18 Almost there
19 Almost there L ( L L) R ( R R) a b a c b a 1 4 2 6 5 3 a a a b c b 1 2 3 4 6 5 ( L L) ( R R) 1 3 6 2 4 5
20 Almost there 1. The arrays contain the same unique major cells 2. The arrays must have equally many of each unique major cell 3. The unique major cells occur in the same order L 'abac' R 'pqrs' L ( L L) R ( R R) a b a c 1 3 2 4 p q r s 1 2 3 4
21 Almost there 1. The arrays share the same set of major cells 2. The arrays must have equally many of each unique major cell 3. The unique major cells occur in the same order L 'abac' R 'abab' L ( L L) R ( R R) a b a c 1 3 2 4 a b a b 1 3 2 4
22 Almost there 1. The arrays share the same set of major cells 2. The arrays must have equally many of each unique major cell 3. The unique major cells occur in the same order L 'abc' R 'cba' L ( L L) R ( R R) a b c 1 2 3 c b a 1 2 3
23 Almost there L ( L L) R ( R R) a b a c b a 1 4 2 6 5 3 a a a b c b 1 2 3 4 6 5 ( L L) ( R R) 1 3 6 2 4 5
24 Almost there 1. The arrays share the same set of major cells 2. The arrays must have equally many of each unique major cell 3. The unique major cells occur in the same order L 'abc' R 'cba' L ( L L) R ( R R) a b c 1 2 3 c b a 1 2 3
25 Almost there 1. The arrays share the same set of major cells 2. The arrays must have equally many of each unique major cell L 'abc' R 'cba' L ( L L) R ( L R) a b c 1 2 3 c b a 3 2 1
26 Almost there 1. The arrays share the same set of major cells 2. The arrays must have equally many of each unique major cell L 'abc' R 'cba' L ( L L) R ( L R) a b c 1 2 3 c b a 3 2 1
27 Almost there (L R) ( L L R) (R L) ( L R L) a b a c b a b a a b a a c 1 8 2 12 9 3 10 4 5 11 6 7 13 b a a b a a c a b a c b a 8 1 2 9 3 4 12 5 10 6 13 11 7
28 Almost there (L R) ( L L R) (R L) ( L R L) a b a c b a b a a b a a c 1 8 2 12 9 3 10 4 5 11 6 7 13 b a a b a a c a b a c b a 8 1 2 9 3 4 12 5 10 6 13 11 7 ( L L R) ( L R L) 2 1 3 5 6 8 4 9 7 11 13 10 12
29 Almost there (L R) ( L L R) (R L) ( L R L) a b a c b a b a a b a a c 1 8 2 12 9 3 10 4 5 11 6 7 13 b a a b a a c a b a c b a 8 1 2 9 3 4 12 5 10 6 13 11 7 ( L L R) ( R) ( L R L) 2 1 3 5 6 8 4
30 Huzzah! (L R) ( L L R) (R L) ( L R L) a b a c b a b a a b a a c 1 8 2 12 9 3 10 4 5 11 6 7 13 b a a b a a c a b a c b a 8 1 2 9 3 4 12 5 10 6 13 11 7 (( L) ( L L R)) ( R) ( L R L) 2 1 3 5 6 7 4
31 Index of ( ) without replacement L 'abacba' R 'baabaac' L R (L R) a b a c b a b a a b a a c 2 1 3 5 6 7 4
32 Progressive dyadic epsilon pdi L{(( ) ( )) ( ) ( )}R 2 1 3 5 6 7 4 pdi L 1 1 1 1 1 0 1
33 Progressive dyadic epsilon L{(( ) ( )) ( ) ( )}R 2 1 3 5 6 7 4 R{(( ) ( )) ( ) ( )}L 1 1 1 1 1 0 1
34 Cheeky operator _WR {(( ) ) (( ) )} L _WR R 2 1 3 5 6 7 4 R _WR L 1 1 1 1 1 0 1
35 Come fly with me F B P E First Class Business PremiumEconomy Economy
36 Come fly with me Seats Passengers F FF FFFFFFFFPPEEEEEEEEEEEEEEEEEEEEE F FF PP PP PP PP PP PP EE EE PP PP EE EE EE EE EE EE
37 Come fly with me Seats Passengers FFFFFFFFPPEEEEEEEEEEEEEEEEEEEEE PP PP PP PP PP seats{' '@( _WR ) }passengers PP PP
38 Come fly with me Seats Passengers FFFFFFFFPPEEEEEEEEEEEEEEEEEEEEE PP PP PP PP PP 24 passengers 31 passengers(+/ _WR)seats PP PP
39 Without Replacement operator _WR {(( ) ) (( ) )} lookup without replacement PDI _WR element without replacement PDE _WR
40 Next webinar Thursday 16th April 15:00 UTC Links TryAPL lesson tinyurl.com/vx67y6b APL Cultivation lesson tinyurl.com/to2na6w Anatomy of an Idiom, Bob Smith tinyurl.com/t2f5h9h