Approach to One-Way ANOVA Comparison of Antidepressants' Sexual Side Effects

matrix approach to 1 way anova n.w
1 / 24
Embed
Share

Explore a matrix approach used in a study comparing sexual side effects of four antidepressants - Bupropion, Fluoxetine, Paroxetine, and Sertraline. The study delves into model constraints, application of constraints, and implications for statistical analysis in determining the impact of these medications on sexual side effects.

  • ANOVA
  • Antidepressants
  • Sexual Side Effects
  • Matrix Approach

Uploaded on | 0 Views


Download Presentation

Please find below an Image/Link to download the presentation.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.

You are allowed to download the files provided on this website for personal or commercial use, subject to the condition that they are used lawfully. All files are the property of their respective owners.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.

E N D

Presentation Transcript


  1. Matrix Approach to 1-Way ANOVA Comparison of Sexual Side Effects in 4 Antidepressants JG Modell, et al (1997). "Comparative Sexual Side Effects of Bupropion, Fluoxetine, Paroxetine, and Sertraline ", Clinical Pharmacology and Therapeutics, Vol.61(4),pp476-487.

  2. Model = = + = + + = 1,..., 1,..., Y i g j n ij i ij i ij i ( g ) = + = 2 ~ 0, 1,..., NID i g ij i i + Problem: Possible Constraints (Last one isn't helpful in extended models): = = = = = = 1 parameters and only group means g 1 g g = = ) 0 i i g i = = 1 1 i i 1 1 g g g n n i i = ) 0 i ii n n n i g g i g i = = = 1 1 1 i i i g ( ) ) 0 iii 1 1 ( ) ) 0 iv i i

  3. Matrix Approach with no constraints (g=3) Y Y 1 i Y Y Y 1 2 i = = Y Y 2 i 3 Y in i ( ( ( ) ) ) + + + 1 1 1 1 n 1 ( ) ( ) ( ) Y = + = + = Y 1 ( ) E Y E E i 2 ij i i n n i 2 3 n 3 1 1 0 0 n n n n 1 1 1 1 1 = = X 1 1 0 0 1 0 0 1 n n n n 2 2 2 2 2 n n n n 3 3 3 3 3 ( ( ( ) ) ) + + + 1 1 n 1 ( ) Y = = X E 1 1 2 n 2 3 n 3 Problem: Last 3 columns of sum to first column so ' X X X is not full rank!

  4. Applying Constraint 1 Part 1 3 = = 0 3 1 2 i = 1 i 1 1 0 n n n 1 1 1 = = X 1 1 0 1 1 1 1 n n n 2 2 2 1 1 2 n n n 3 3 3 ( ( ) ) + + 1 1 n 1 = = ( ) Y X E 1 1 1 2 n 2 ( ) 1 1 2 n 3 ( ) + ^ 1 = T 1 T 1 X X X Y 1 1 + + + + n n n n n n n n n Y Y Y 1 2 3 1 3 2 3 1 2 3 = = T 1 T 1 X X X Y n n n n n + Y Y Y Y 1 1 3 1 3 3 1 3 n n n 2 3 3 2 3 2 3

  5. Applying Constraint 1 Part 2 ( ) = T 1 X X det 1 ( ( ) ( ) ( ( )( )( ) ( )( ) + + + + + 2 n n n n n n n n n n n n 1 2 3 1 3 2 3 1 3 2 3 3 ) ) ( ) ( + ) ( ) ( + ) 2 2 + + + + 2 3 n n n n n n n n n n n n 2 3 1 3 1 3 2 3 1 2 3 (1 1) + + + (1 1) + 2 1 2 1 n n n n 2 2 3 = ((1 1 1 2) ( 2 2)) + + + + + + + ((1 1 2) (1 2 1)) + + + + 2 (1 1) n n 1 2 3 n n n n n 1 3 n n 3 3 ((1 2) (1 1 1)) n + 1 2 2 2 n n 9 n n n + 2 (1 1) ((1 1 2) ( 2 1 1)) 3 2 3 = 1 2 3 1 X X ( ) 1 = T 1 X X ( ) 1 T 1 det 1 = + + n n n + n n + n n + n + n n n n n n 1 3 3 1 3 3 1 3 1 3 det det det n n n n n + n 3 2 n n 3 n n 2 n + 3 n 2 n n 3 n n 2 + 3 + 3 n + n n n n n n n n n 1 3 2 3 1 2 3 2 3 1 2 3 1 3 det det det n + n n n n + n + 3 n n 2 3 2 3 + 2 n 3 n 2 n 3 n 3 n n + n n n n n n n n 1 3 2 3 1 2 3 2 3 1 2 3 1 3 det det det n n n n n n 1 3 3 1 3 3 1 3 1 3

  6. Applying Constraint 1 Part 3 1 ( ) 1 = T 1 X X 1 9 + 1 2 3 n n n n n n n n n + 2 2 1 2 n n n n n n 1 3 n n n n n n 2 3 n n n n 1 2 n n n n n n 1 3 n n n n n n n n 1 2 n n 2 3 n n n n n n + 2 3 1 3 2 + + 2 2 4 2 n n 2 3 1 2 1 3 1 2 1 3 2 3 1 3 4 + 2 3 2 2 1 2 n n 1 3 n n 1 3 1 2 2 3 1 3 = 2 3 2 3 ^ ( ) ^ ^ 1 = = T 1 T 1 X X X Y 1 1 1 ^ 2 1 9 1 2 n n n n n n n n n 3 + + + + 2 2 1 3 n n n n n n 2 3 n n n n n n 2 3 n n n n 1 2 n n n n n n 1 3 n n n n n n n n 1 2 n n 2 3 n n n n n n + Y Y Y 1 2 1 3 2 1 2 3 + + 2 2 4 2 n n Y Y Y Y 2 3 1 2 1 3 1 2 1 3 2 3 1 3 4 + 2 3 1 3 2 2 1 2 n n 1 3 n n 1 3 1 2 2 3 1 3 2 3 2 3 2 3

  7. Applying Constraint 1 Part 4 ( ( ( ) ) ( ( ( ) ( ) ( ) ( ) ) ) ( + + + + 2 Y 1 2 n n 1 3 n n 2 3 n n 2 3 n n 1 2 n n 1 3 n n 1 1 ^ = + + + + 2 Y 1 2 n n 1 3 n n 2 3 n n 1 3 n n 1 2 n n 2 3 n n 2 9 1 2 3 n n n ) ) + + 2 2 Y 1 2 n n 1 3 n n 2 3 n n 2 3 n n n n 1 3 n n 1 3 n n 1 2 n n 2 3 n n 3 1 2 1 3 1 ( ) ( ) ( ) = + + = + + 3 3 3 Y 2 3 n n Y 1 3 n n Y 1 2 n n Y Y Y 1. 2. 3. 1 2 3 9 1 2 3 n n n ( ( ( ) ( ( ( ) ( ) ( ) ( ) + + + + 2 4 Y 2 3 n n 1 2 n n 1 3 n n 1 2 n n 1 3 n n 2 3 n n 1 1 ^ ) ) = + + 2 2 2 Y 2 3 n n 1 2 n n 1 3 n n 1 2 n n 1 3 n n 2 3 n n 1 2 9 1 2 3 n n n ) ) ( 1 3 ) + + 2 4 2 2 Y 2 3 n n 1 2 n n 1 3 n n 1 2 n n 1 3 n n 2 3 n n 1 2 n n 1 3 n n 2 3 n n 3 1 2 3 1 3 ( ) ( ) ( ) = + + = 6 3 3 Y 2 3 n n Y 1 3 n n Y 1 2 n n Y Y Y 1 2 3 1 2 3 9 1 2 3 n n n 2 3 1 3 1 3 2 3 1 3 1 3 ^ ^ = = Y Y Y Y Y Y 2 1 3 3 1 2 2 3

  8. Applying Constraint 2 Part 1 3 n n n n i = = 1 = 0 n n n n 1 2 3 3 1 2 2 3 1 2 i = 1 i 3 3 ( ( ) ) + + 1 1 0 1 1 n n n n 1 1 1 1 = = = = ( ) Y E X 1 0 1 X 1 2 2 2 2 1 2 n n n n 2 2 2 2 n n n n n n n n 2 1 1 1 1 2 1 1 2 n n n 1 2 n 3 3 3 3 3 3 3 3 ( ) ^ 1 = T 2 T 2 X X X Y 2 2 + + 0 0 n n n + + Y Y Y 1 2 3 1 2 n n n n 3 n n 1 2 n n n = + = T 2 T 2 X X X Y 0 1 n Y Y 1 1 2 1 1 3 3 3 3 1 2 n n n n n Y Y 2 + 0 1 n 2 2 3 2 3 3 3

  9. Applying Constraint 2 Part 2 ( ) = T 2 X X det 2 n n n n ( ) + + + + + + 1 1 0 0 n n n n n 1 2 1 2 3 1 2 3 3 2 1 2 n n n ( ) + + + + 0 0 n n n 1 2 3 3 ) ( ) n n n n n n ( )( ) = + + + + + 1 1 n n n n n 1 2 1 2 2 n 1 2 3 1 2 3 3 3 ( + + + n n n n n n ( ) = + = 1 2 3 1 2 2 N n n N 1 2 n 3 3

  10. Applying Constraint 2 Part 3 1 X X ( ) 1 = T 2 X X ( ) 2 T 2 det 2 = 1 2 n n n n n 1 2 n n n n n + 0 1 n 1 + 0 1 n 1 1 1 3 3 3 3 det det det n n 1 2 n n n 1 2 n n n n n + 0 1 n 2 + 0 1 n 2 2 2 3 3 3 0 3 0 0 N 0 N det det det 1 2 n n n 1 2 n n n n n n n + + 0 1 0 1 n n 2 2 2 2 3 3 3 3 0 0 0 N 0 N det det det 1 2 n n n n n 1 2 n n n n n + + 0 1 0 1 n n 1 1 1 1 3 3 3 3 Nn n 1 N 0 0 1 2 n 0 0 3 ( ) ( ) + + Nn n n n n 1 N + n Nn n = = 2 2 3 2 Nn 3 0 0 3 1 2 n 2 N n n n 1 2 3 3 + 1 ( ) ( ) n n 1 N Nn n n Nn n 1 Nn 3 0 1 1 3 0 1 2 n n 2 3 3

  11. Applying Constraint 2 Part 4 1 N 0 0 ^ + + Y Y Y 1 2 n n n n 3 ( ) + n n 1 N + ( ) ^ ^ 1 = = = T 2 T 2 2 Nn 3 0 Y Y 1 X X X Y 1 2 2 1 3 1 3 ^ ( ) n n 1 N 2 Y Y 2 1 Nn 3 0 2 3 3 2 + + + + Y Y Y n Y n Y n Y ^ 1 2 3 = = = 1 2 3 1 2 3 Y N N 1 N ( ) ( ) + + n n n n n N n n n n n N ^ = = = 2 Nn 3 2 3 3 Y Y Y Y Y Y Y Y Y 1 2 2 1 2 3 1 1 1 3 2 3 N 1 3 3 ( ) ( ) + + n n n n 1 N n N n n n n n N ^ = + = = 1 Nn 3 1 3 3 Y Y Y Y Y Y Y Y Y 1 2 1 2 1 3 2 2 1 3 2 3 N 3 2 3 ( ) + n n n N n N ^ = = 1 2 Y Y Y Y Y 1 2 3 1 2 3 3 N

  12. Applying Constraint 3 Part 1 = = = + + 3 = 0 1 1 1 0 0 n n n 1 1 1 = X 1 1 0 3 3 2 n n n 2 2 2 1 0 1 3 n n n 3 3 3 1 n 1 ( ( ) ) = ( ) Y X E 1 3 3 2 n 2 1 3 n ( ) + ^ 1 = T 3 T 3 X X X Y 3 3 + + + n n n n n n n n Y Y Y Y Y 1 2 3 2 3 1 2 3 = = T 3 T 3 X X X Y 0 n 3 2 2 2 0 3 3 3

  13. Applying Constraint 3 Part 2 ( ) ) ( ) ( ( ) = + + 0 0 + + + + = T 2 2 X X det 0 n n n n n 2 3 n n 3 2 n n 1 2 3 n n n 3 3 1 2 3 2 3 1 X X ( ) 1 = T X X ( ) 3 3 T det 3 3 = 0 n 0 n n n n n n n 2 2 2 2 det det det 0 0 3 n n 3 3 3 N n n N n n n n 2 3 3 2 det det det 0 0 3 3 N n 3 n 3 n n n n n n n N n n n 2 3 3 2 det det de t 0 0 2 2 2 2 1 1 1 2 3 n n n n n n 2 3 n n n n n 2 3 1 n n 1 1 1 ( ) ( n ) = = + 2 3 1 1 1 n Nn n n n 1 2 n n n 2 3 3 2 3 1 1 2 1 1 2 3 n n n ( ) ( ) + 2 2 1 2 3 n n Nn n n 1 3 n n 2 3 2 1 1 1 3

  14. Applying Constraint 3 Part 3 ^ ( ) ^ ^ 1 = = = T 3 T 3 3 X X X Y 2 3 ^ 3 + + 1 1 1 n n n Y Y Y Y Y 1 n n 1 1 1 2 3 ( ) ( n ) + 1 1 1 n n n 1 2 n n n 1 1 2 1 2 ( ) ( ) + 1 n 1 3 n n 1 1 1 3 3 ^ ( )( ) ( )( ) ( )( ) ) = + + = 1 1 1 n Y Y Y n Y n Y Y 1 1 1 2 3 1 2 1 3 ^ ( ( )( ) ( ) ( + ) ( ) ) = + + + + = 1 1 1 1 n Y Y Y n n Y n Y Y Y 2 1 2 1 1 2 3 1 2 2 1 3 ^ ( ( )( ) ( + ) ( ) ( + ) = + + + = 1 1 1 1 n Y Y Y n Y n n Y Y Y 3 1 3 1 1 2 3 1 2 3 1 3

  15. Applying Constraint 4 = 3 3 = = 0 i i 1 0 0 1 n 1 n n n 1 1 1 1 1 = = = ( ) Y E X 0 0 1 0 0 1 X 1 1 4 1 4 4 n 2 2 n n n 2 2 2 2 3 n 3 n n n 3 3 0 n 0 0 n n Y Y Y 1 1 ( ) ^ 1 = = = T 4 T 4 T 4 T 4 0 0 X X X Y X X X Y 4 4 4 2 2 0 3 3 Y = 1 0 n 0 0 n n Y Y Y 1 1 1 ( ) ^ 1 = = T 4 T 4 0 0 1 Y X X X Y 2 4 4 2 2 0 1 Y 3 3 3

  16. 1 g + + ... Y Y 1 g S U M M A R Y g 1 1 g g Y Y 1 i g ^ g = = Constraint 1: 0: = 2 i 1 i = 1 i g 1 1 g g Y Y 1, g i g = 1 i i g 1 1 N + + = ... n Y n Y Y 1 g 1 g g n N N n = i Y Y Y Y 1 1 1 i g ^ N i = = Constraint 2: 0: = n 2 i 2 i = 1 i N n g n N 1 g = i Y Y Y Y 1, 1 g i g N = 1 i i g 1 Y Y 1 1 Y Y Y ^ ^ 2 1 2 = = = = Constraint 3: 0: Constraint 4: 0: 3 4 1 Y Y Y 1 g g

  17. Estimable Functions A linear function of the parameter vector , h is said to be estimable if h =t X. That is, if h can be written as a linear function of the rows of X 1 1 0 0 n n n n 1 1 1 1 1 = = X 1 1 0 0 1 0 0 1 n n n n 2 2 2 2 2 n n n n 3 3 3 3 3 Some commonly estimated estimable functions: g g + i = ) ) ) . . 0 i ii iii c st c ' i i i i i = = 1 1 i i Some non-estimable functions: ) ) i iv v vi + ) ' i i

  18. Uniqueness of Estimates of Estimable Functions + Estimable Function: : 1 g = Constraint 1: 0: i = 1 i g 1 g 1 1 g g = + + = ... Y Y Y Y 1 1 g i 1 g = 2 i 1 g 1 g + = + = Y Y Y 1 1 1 1 g g i = Constraint 2: 0: n i = 1 i g 1 N n N N n = + + = ... i n Y n Y Y Y 1 1 1 t i 1 1 t N = 2 i = n N N n + = + = Y Y Y 1 1 1 1 1 1 N = = + = Constraint 3: 0: Y Y Y Y 1 2 1 2 2 2 1 = = = + = Constraint 4: 0: 0 Y Y 1 1 1 1

  19. Application: Comparison of g=4 Antidepressants Response: Y = Change in libido scores for patients on antidepressants Treatments: g=4 Brands of antidepressants Prozac (n1 = 37) Paxil (n2 = 21) Zoloft (n3 = 27) Wellbutrin (n4 = 22) N=107, g=4, Prozac, Paxil, Zoloft are SSRI s, Wellbutrin not Will make generalizations of case g=3

  20. Data and Analysis of Variance Brand (i) Prozac (1) Paxil (2) Zoloft (3) Wellbutrin (4) Total n(i) 37 21 27 22 107 Ybar(i) -0.49 -0.90 -0.49 0.46 #N/A SD(i) 0.97 0.73 1.25 0.80 #N/A Ybar -0.3751 -0.3751 -0.3751 -0.3751 #N/A SSTRT 0.4881 5.7850 0.3562 15.3441 21.9735 SSE 33.8724 10.6580 40.6250 13.4400 98.5954 ANOVA Source Brands Error Total df 3 103 106 SS MS 7.32 0.96 F F(.05) 2.69 P-value 0.0001 21.97 98.60 120.57 7.65 H0 : Brand Means are all equal Conclude brand means are not all equal Note: s2 = MSE = 0.96

  21. Parameter Estimates Constraint 1 X1'X1 107 15 -1 5 X1'Y -40.14 -28.25 -29.02 -23.35 15 59 22 22 -1 22 43 22 5 22 22 49 (X1'X1)^-1 0.009821 -0.00306 0.002084 -0.00056 -0.00306 0.023335 -0.00884 -0.00619 0.002084 -0.00884 0.033631 -0.01134 -0.00056 -0.00619 -0.01134 beta1 -0.355 -0.135 -0.545 -0.135 0.02834

  22. Parameter Estimates Constraint 2 X2'X2 107.0000 0.0000 0.0000 0.0000 X2'Y -40.14 -35.15 -28.56 -25.65 0.0000 99.2273 35.3182 45.4091 0.0000 35.3182 41.0455 25.7727 0.0000 45.4091 25.7727 60.1364 (X2'X2)^-1 0.009346 0.000000 0.000000 0.000000 0.000000 0.017681 -0.009346 -0.009346 0.000000 -0.009346 0.038273 -0.009346 0.000000 -0.009346 -0.009346 0.027691 beta2 -0.37514 -0.11486 -0.52486 -0.11486

  23. Parameter Estimates Constraint 3 X3'X3 107.0000 21.0000 27.0000 22.0000 X3'Y -40.14 -18.9 -13.23 10.12 21.0000 21.0000 0.0000 0.0000 27.0000 0.0000 27.0000 0.0000 22.0000 0.0000 0.0000 22.0000 (X3'X3)^-1 0.027027 -0.027027 -0.027027 -0.027027 -0.027027 0.074646 0.027027 0.027027 -0.027027 0.027027 0.064064 0.027027 -0.027027 0.027027 0.027027 0.072482 beta3 -0.49 -0.41 0.00 0.95

  24. Parameter Estimates Constraint 4 X4'X4 37.0000 0.0000 0.0000 0.0000 X4'Y -18.13 -18.9 -13.23 10.12 0.0000 21.0000 0.0000 0.0000 0.0000 0.0000 27.0000 0.0000 0.0000 0.0000 0.0000 22.0000 (X4'X4)^-1 0.027027 0.000000 0.000000 0.000000 0.000000 0.047619 0.000000 0.000000 0.000000 0.000000 0.037037 0.000000 0.000000 0.000000 0.000000 0.045455 beta4 -0.49 -0.9 -0.49 0.46

Related


More Related Content