CEPC Heating in IR Region of MDI Workshop Summary
"Explore the key aspects of CEPC's Heating in the IR Region of MDI workshop, including beam parameters, vacuum chamber structure, and impedance results. Gain insights into CDR and high luminosity Z (2T) for CEPC, with detailed parameters and layout information. Discover the comprehensive list of parameters listed by Wang Dou, covering energy, radiation, particle numbers, and more. Delve into the details of high luminosity Z (2T) parameters provided by Wang Dou, comparing CEPC-CDR, CEPC-30MW, and CEPC-39MW configurations. Stay informed about the latest developments in the field of particle physics and accelerator technology."
Download Presentation
Please find below an Image/Link to download the presentation.
The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.
You are allowed to download the files provided on this website for personal or commercial use, subject to the condition that they are used lawfully. All files are the property of their respective owners.
The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.
E N D
Presentation Transcript
HOM HOM Heating in IR region of MDI for CEPC Heating in IR region of MDI for CEPC Liu Yu dong, Wang Na, Wang Hai Jing, Bai Sha, Wang Dou CEPC MDI workshop, Dong Guan, Aug 28-29, 2020
outline outline Beam parameters in CDR and high luminosity Z (2T) for CEPC Structure and Layout of the vacuum chamber in IR Impedance results and power deposition for different IR pipe model Summary
CEPC CDR Parameters Listed by Wang Dou Higgs W Z 3T Z 2T Number of IPs Beam energy (GeV) Circumference (km) Synchrotron radiation loss/turn (GeV) Crossing angle at IP (mrad) Piwinski angle Number of particles/bunch Ne(1010) Bunch number (bunch spacing) Beam current (mA) Synchrotron radiation power /beam (MW) Bending radius (km) Momentum compact (10-5) function at IP x* / y* (m) Emittance x/ y(nm) Beam size at IP x/ y( m) Beam-beam parameters x/ y RF voltage VRF(GV) RF frequency fRF(MHz) (harmonic) Natural bunch length z(mm) Bunch length z(mm) HOM power/cavity (2 cell) (kw) Energy spread (%) Energy acceptance requirement (%) Energy acceptance by RF (%) Photon number due to beamstrahlung Beamstruhlung lifetime /quantum lifetime* (min) Lifetime (hour) F (hour glass) Luminosity/IPL (1034cm-2s-1) 2 120 80 45.5 100 1.73 0.34 0.036 16.5 2 3.48 15.0 7.0 12.0 23.8 8.0 242 (0.68 s) 17.4 30 1524 (0.21 s) 87.9 30 12000 (25ns+10%gap) 461.0 16.5 10.7 1.11 0.36/0.0015 1.21/0.0024 20.9/0.06 0.018/0.109 2.17 0.36/0.0015 0.54/0.0016 13.9/0.049 0.013/0.123 0.47 0.2/0.0015 0.18/0.004 6.0/0.078 0.004/0.06 0.2/0.001 0.18/0.0016 6.0/0.04 0.004/0.079 0.10 650 (216816) 2.98 5.9 0.75 0.098 0.90 1.47 0.050 >400 2.72 4.4 0.46 0.134 1.35 2.06 0.082 80/80 2.42 8.5 1.94 0.080 0.49 1.7 0.023 2.5 0.43 0.89 2.93 1.4 0.94 10.1 4.6 0.99 16.6 32.1
CEPC high luminosity Z (2T) Listed by Wang Dou CEPC-CDR CEPC-30MW CEPC-39MW CEPC-30MW 2 Number of IPs Energy (GeV) Circumference (km) SR loss/turn (GeV) Half crossing angle (mrad) Piwinski angle Ne/bunch (1010) Bunch number Beam current (mA) SR power /beam (MW) Bending radius (km) Momentum compaction (10-5) IPx/y (m) Emittance x/y (nm) Transverse IP(um) x/ y/IP VRF(GV) fRF(MHz) (harmonic) Nature bunch length z(mm) Bunch length z(mm) HOM power/cavity (kw) Energy spread (%) Energy acceptance (DA) (%) Energy acceptance by RF (%) Lifetime (hour) Lmax/IP(1034cm-2s-1) 2 2 2 45.5 100 0.036 16.5 18.0 16.1 45.5 100 0.036 16.5 23.8 8.0 12000 461 16.5 10.7 1.11 0.2/0.001 0.18/0.0016 6.0/0.04 0.004/0.079 0.1 650 2.42 8.5 1.94 (2cell) 0.08 1.5 1.7 2.5 32.1 45.5 100 0.036 16.5 27.9 12.0 45.5 100 0.036 16.5 33.0 15.0 15000 1081.4 38.6 10.7 1.11 0.2/0.001 0.18/0.0016 6.0/0.04 0.004/0.098 0.10 650 2.42 11.8 3.15 (1cell) 0.115 0.7 1.7 1.8 101.6 10870 (27ns) 841.0 30 10.7 2.23 0.15/0.001 0.52/0.0016 8.8/0.04 0.0048/0.129 0.13 650 (216816) 2.93 9.6 3.2 (1cell) 0.12 1.4 1.5 1.8 101.1 14564 (20.6ns+10%gap) 839.9 30 10.7 1.11 0.2/0.001 0.18/0.0016 6.0/0.04 0.004/0.093 0.10 650 2.42 10.0 2.29 (1cell) 0.1 0.6 1.7 2.0 74.5
Structure and Layout of IR pipe Be pipe Al: Transition pipe Total length:2220mm Cu: Y-shape crotch SQ Pipe Cu: 360mm Al: 625mm Be: 250mm
Model 0 Cut off Frequency of SCQ Pipe( 28mm): 8.195 GHz 5.6632 GHz Cut off Frequency of Be pipe ( 28mm): 8.195 GHz z=5mm: Two beam in the IR Loss factor Trap in IR@k_trap:0.0504 v/pc Ptrap: H/W/Z: 42.0w/170.4w/595.2w Pprop: H/W/Z: 26.8w/108.6w/379.4w
Model 1 7.763GHz Cut off Frequency of SCQ Pipe( 20mm): 11.474 GHz Cut off Frequency of Be pipe ( 28mm): 8.195 GHz z=5mm: Two beam in the IR Loss factor Trap in IR @k_trap: 0.0148v/pc Ptrap: H/W/Z: 12.3w/49.8w/174.2w Pprop: H/W/Z: 10.2w/41.6w/145.5w
Model 2 Cut off Frequency of SCQ Pipe( 20mm): 11.474 GHz 7.853GHz Cut off Frequency of Be pipe ( 28mm): 8.195 GHz z=5mm: Two beam in the IR Loss factor Trap in IR @k_trap: 0.018v/pc Ptrap: H/W/Z: 15.0w/60.7w/212.3w Pprop: H/W/Z: 7.1w/28.9w/101.2w
Model 3 Cut off Frequency of SCQ Pipe( 20mm): 11.474 GHz 7.847GHz Cut off Frequency of Be pipe ( 28mm): 8.195 GHz z=5mm: Two beam in the IR Loss factor Trap in IR @k_trap: 0.017v/pc Ptrap: H/W/Z: 14.2w/57.5w/201.1w Pprop: H/W/Z: 6.2w/25w/87.3w
Model 4 Cut off Frequency of SCQ Pipe( 20mm): 11.474 GHz 7.851GHz Cut off Frequency of Be pipe ( 20mm): 11.474 GHz z=5mm: Two beam in the IR Loss factor Trap in IR @k_trap: 0.0174v/pc Ptrap: H/W/Z: 14.5w/58.9w/205.9w Pprop: H/W/Z: 5.19w/21.0w/73.4w
Model 5 Cut off Frequency of SCQ Pipe( 11.160m): 20.5GHz Impedance from this big cavity All mode traped in the IR pipe z=5mm: Two beam in the IR Loss factor Trap in IR @k_trap: 2.703v/pc Ptrap: H/W/Z: 2.2kw/9.1kw/31.9kw
Summary on HOM heating Power for IR CDR beam parameters IR Model H W Z Model 0 (28mm-28mm) Ptrap: 42w Ppro: 26.8w Ptrap: 170.4w Ppro: 108.6w Ptrap: 595.2w Ppro:379.4w Ptotal: 68.8w Ptotal: 279w Ptotal: 974.6w Model 1 (28mm-20mm) Ptrap:12.3w Ppro:10.2w Ptrap:49.8w Ppro:41.6w Ptrap:174.2w Ppro:145.5w Ptotal: 22.5w Ptotal: 91.4w Ptotal: 319.7w Model 2 (28mm-20mm) Ptrap:15w Ppro:7.1w Ptrap:60.7w Ppro:28.9w Ptrap:212.3w Ppro:101.2w Ptotal: 22.1w Ptotal: 89.6w Ptotal: 313.5w Model 3 (28mm-20mm) Ptrap:14.2w Ppro:6.2w Ptrap:57.5w Ppro:25w Ptrap:201.1w Ppro:87.3w Ptotal: 20.4w Ptotal: 82.5 w Ptotal: 288.4w Model 4 (20mm-20mm) Ptrap:14.5w Ppro:5.2w Ptrap:58.9w Ppro:21.0w Ptrap:205.9w Ppro:73.4w Ptotal: 19.7w Ptotal: 79.9w Ptotal: 279.3w Model 5 (28mm-11mm) Ptrap:2.2kw Ppro:- Ptrap:9.1kw Ppro:- Ptrap:31.9kw Ppro:- Ptotal:2.2kw Ptotal:9.1kw Ptotal:31.9kw
Model 3: Power deposition in different region of IR (Z &CDR parameters & z@5mm&material@PEC) Source of the heating: Total length:2220mm (1) Ohmic loss (2)Power trapped in IR pipe (f< 11.474GHz) Cu: 360mm Al: 625mm Be: 250mm (3)HOM from other part of the ring Be pipe: 2*7.08+2*5.45+2*12.84=50.74W Al: Transition pipe: 2*31.3+2*58.76+2*64.2=308.52w Cu: Y-shape crotch: 2*10.69+2*36.33+2*36.97=167.98w Total power on IR pipe: 527.24w
Model 3: Power deposition in different region of IR (Z &CDR parameters & z@5mm&material@Lossy mental) z=5mm: Two beam in the IR Loss factor Trap in IR @k_trap: 0.0309v/pc Ptrap: H/W/Z: 25.7w/104.4w/364.7w Source of the heating: (1)Power trapped in IR pipe (f< 11.474GHz) (2)HOM from other part of the ring Be pipe: 2*8.78+2*12.84=43.24W Al: Transition pipe: 2*106.9+2*64.2=342.2w Total power on IR pipe: 592.94w Cu: Y-shape crotch: 2*66.58+2*36.97=207.1w
Model 3: Power deposition in different region of IR ( Z &High Luminosity & z@6.2mm&material@PEC) z=6.2mm: Two beam in the IR Loss factor Trap in IR @k_trap: 0.0114v/pc Ptrap: H/W/Z: 9.5w/38.5w/592.6w (1) Ohmic loss (2)Power trapped in IR pipe (f< 11.474GHz) Source of the heating: (3)HOM from other part of the ring Be pipe: 2*21.83+2*14.7+2*49.41=171.88W Al: Transition pipe: 2*96.48+2*173.7+2*247.0=1034.36w Cu: Y-shape crotch: 2*32.96+2*107.9+2*142.3=566.32w Total power on IR pipe: 1772.56w
Model 3: Power deposition in different region of IR ( Z &High Luminosity & z@6.2mm&material@lossy mental) z=6.2mm: Two beam in the IR Loss factor Trap in IR @k_trap: 0.0196/v/pc Ptrap: H/W/Z: 16.38w/66.4w/1021.2w Source of the heating: (1)Power trapped in IR pipe (f< 11.474GHz) (2)HOM from other part of the ring Be pipe: 2*19.04+2*49.41=136.9W Al: Transition pipe: 2*301.61+2*247.0=1097.22w Total power on IR pipe: 1898.6w Cu: Y-shape crotch: 2*189.94+2*142.3=664.48w
For Model 3 (with Be pipe aperture 28mm, quadrupole aperture 20mm), the structure seems feasible for beam parameters in CDR and High Luminosity Z. CDR beam parameters High Luminosity beam parameters HOM power(w) power density w/cm2 HOM power(w) power density(w/cm2 Power Be pipe (w) 50 0.227 136.9 0.622 Al: Transition pipe (w) 342 0.316 1097 1.012 Cu: Y-shape crotch (w) 207 0.158 664 0.507 Total power in IR pipe (w) 592 0.234 1898 0.714 It is seems that the Model 3 structure can be acceptable but one serious weakness appears. Total length:2220mm Be: 136.9w Cu: 332w synchrotron radiation: with some extreme beam deviation, SR will be in IR. Al: 548w Bai Sha, Talk in this workshop
Solution: Shrinking the SQ Pipe aperture in Y-shape crotch HOM power enhancement Shorten the cavity structure in IR 20 12 Shorten the length
Optimized structure for IR chamber ver20200715 d28-d40-d20 805 855 700 mm 28 28 28 40 40 IP 1-120 120-205 Be Al 205-655 Al taper1:75 655-700 Al 700-780 40 Cu 40 30.7- 40 40- 40 40- 30.7 780-805 Cu 805-855 Cu 12 20 855-1110 Cu
CDR beam parameters: z=5mm: Two beam in the IR Loss factor Trap in IR @k_trap: 0. 127v/pc Ptrap: H/W/Z: 106w/432w/1508w Source of the heating(for CDR beam parameters): Higgs (1)Power trapped in IR pipe Z Be pipe: 2*2.2+2*0.8=6W (2)HOM from other part of the ring Be pipe: 2*31.1+2*12.84=87.9W Al: 2*28.6+2*4.2=65.5w Al: 2*405.5+2*66.8=943.6w Cu: 2*32.9+2*2.2=70.2w Cu: 2*317.6+2*35.2=705.6w Total power on IR pipe (Higgs&Z): 141.7w 1737.1w
Power deposition with High Luminosity Z Be pipe: 2*156.9+2*49.41=412.6W Total power on IR pipe (Z): 5.76kw Al: 2*1275+2*257.3=3064w Cu: 2*1009+2*135.4=2288w Maximum Power CDR beam parameters (Higgs model) CDR beam parameters (Z model) CDR beam parameters (High Luminosity Z) 6w (0.027w/cm2) 87.9w (0.41w/cm2) 412.6w (1.96w/cm2) Be pipe (w) 65.5w (0.1w/cm2) 943.6w (1.48w/cm2) 3064w (4.8w/cm2) Al: Transition pipe (w) 70.2w (0.135w/cm2) 705.6w (1.36w/cm2) 2288w(4.4w/cm2) Cu: Y-shape crotch (w) 141.7 (0.087w/cm2) 1737.1w(1.08w/cm2) 5764.7w (2.26w/cm2) Total power(w)
Summary With CDR beam current, One feasible IR chamber was derived which can meet the requirements on HOM power and synchrotron radiation. With beam current for High Luminosity Z, the HOM power will be 3 times higher. HOM absorber may be one choice as FCC. The smaller aperture of beryllium tube may be beneficial to the reduction of high order mode power. Thanks for your attention!