Comparing Power Consumption of CEPC and FCC for High Luminosity Circular Colliders
The Circular Electron Positron Collider (CEPC) and Future Circular Collider (FCC) are compared in terms of power consumption. This comparison includes parameters, location, electrical demand, and RF power efficiency for CEPC's 30MW CDR. The data provides insights into the energy requirements and efficiencies of these particle accelerators.
Download Presentation

Please find below an Image/Link to download the presentation.
The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.
You are allowed to download the files provided on this website for personal or commercial use, subject to the condition that they are used lawfully. All files are the property of their respective owners.
The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.
E N D
Presentation Transcript
Power Consumption Comparisons of CEPC vs FCC J. Gao Sept.21 2022
Circular Electron Positron Collider (CEPC) J. Gao On behalf of CEPC Accelerator Group 65th ICFA Advanced Beam Dynamics Workshop on High Luminosity Circular e+e- Colliders (eeFACT2022) Sept. 16, 2022
CEPC CDR Parameters (30MW) Higgs Z 3T Z 2T W Number of IPs 2 120 80 45.5 Beam energy (GeV) Circumference (km) Synchrotron radiation loss/turn (GeV) Crossing angle at IP (mrad) Piwinski angle Number of particles/bunch Ne(1010) Bunch number (bunch spacing) Beam current (mA) Synchrotron radiation power /beam (MW) Bending radius (km) Momentum compact (10-5) function at IP x* / y* (m) Emittance x/ y(nm) Beam size at IP x/ y( m) Beam-beam parameters x/ y RF voltage VRF(GV) RF frequency fRF(MHz) (harmonic) Natural bunch length z(mm) Bunch length z(mm) HOM power/cavity (2 cell) (kw) Natural energy spread (%) Energy acceptance requirement (%) Energy acceptance by RF (%) Photon number due to beamstrahlung 100 1.73 0.34 0.036 16.5 2 2.58 15.0 7.0 12.0 23.8 8.0 242 (0.68 s) 17.4 30 1524 (0.21 s) 87.9 30 12000 (25ns+10%gap) 461.0 16.5 10.7 1.11 0.36/0.0015 1.21/0.0031 20.9/0.068 0.031/0.109 2.17 0.36/0.0015 0.54/0.0016 13.9/0.049 0.013/0.106 0.47 0.2/0.0015 0.18/0.004 6.0/0.078 0.0041/0.056 0.2/0.001 0.18/0.0016 6.0/0.04 0.0041/0.072 0.10 650 (216816) 2.98 5.9 0.75 0.066 0.4 1.47 0.05 2.72 3.26 0.54 0.1 1.35 2.06 0.1 2.42 8.5 1.94 0.038 0.23 1.7 0.023 Lifetime _simulation (min) 100 0.67 0.89 2.93 1.4 0.94 10.1 4.0 2.1 Lifetime (hour) F (hour glass) Luminosity/IP L (1034cm-2s-1) 0.99 16.6 32.1
CEPC 30MWCDR Location and electrical demand(MW) System for Higgs 30MW Total (MW) Surface building Ring Booster LINAC BTL IR 1 RF Power Source 103.8 0.15 5.8 109.75 2 3 4 5 6 Cryogenic System Vacuum System Magnet Power Supplies Instrumentation Radiation Protection 10.55 9.784 47.21 0.9 0.25 0.64 3.792 11.62 0.6 1.72 12.9 14.222 61.9 1.7 0.35 0.646 1.75 0.2 0.1 1.06 0.26 7 8 9 10 Control System Experimental devices Utilities General services 1 0.6 0.2 0.005 0.005 4 1.2 0.2 1.81 4 38.53 19.75 31.79 7.2 3.53 1.38 0.2 0.63 0.15 12 Total 212.484 20.932 10.276 1.845 7.385 12 264.912
RF power 20220605: CEPC Collider SRF Wall Plug Efficiency 95% 96% 70% 95% ~100% ~100% ~60.6% 5% more power Z.S. Zhou Modulator to klystron Klystron to waveguide Waveguide to coupler Coupler to cavity Cavity to beam Overall efficiency LLRF control Required wall power for SRF = beam power * 1.05 / 0.606 = beam power * 1.73= 103.8 MW (beam power = 60 MW@Higgs and W) Required wall power for SRF = beam power * 1.05 / 0.606 = beam power * 1.73= 57.1 MW (beam power = 33 MW@Z) 20220913: CEPC Collider SRF Wall Plug Efficiency 20220605 20220913 95% 95% Modulator to klystron 96% 70% 95% 96% 7 75% 95% Klystron to waveguide Waveguide to coupler Coupler to cavity ~100% ~100% Cavity to beam ~100% ~60.6% 5% more power ~100% ~6 65.0% 5% more power Overall efficiency LLRF control Required wall power for SRF = beam power * 1.05 / 0.65 = beam power * 1.615= 96.9 MW (beam power = 60 MW@Higgs and W)
CEPC TDR Parameters (30MW) Higgs Z W ttbar Number of IPs Circumference [km] SR power per beam [MW] Half crossing angle at IP [mrad] Bending radius [km] Energy [GeV] Energy loss per turn [GeV] Piwinski angle Bunch number Bunch spacing [ns] Bunch population [10^10] Beam current [mA] Momentum compaction [10^-5] Beta functions at IP (bx/by) [m/mm] Emittance (ex/ey) [nm/pm] Beam size at IP (sigx/sigy) [um/nm] Bunch length (natural/total) [mm] Energy spread (natural/total) [%] Energy acceptance (DA/RF) [%] Beam-beam parameters (ksix/ksiy) RF voltage [GV] RF frequency [MHz] Longitudinal tune Qs Beam lifetime (bhabha/beamstrahlung)[min] Beam lifetime [min] Hour glass Factor Luminosity per IP[1e34/cm^2/s] 2 100.0 30 16.5 10.7 120 1.8 5.94 268 45.5 0.037 24.68 11934 80 180 9.1 1.21 35 0.357 6.08 1297 257 13.5 84.1 1.43 0.21/1 0.87/1.7 13/42 2.5/4.9 0.07/0.14 1.2/2.5 0.012/0.113 0.7 650 0.062 60/700 55 0.9 16 591 (53% gap) 13 16.7 0.71 0.3/1 0.64/1.3 14/36 2.3/4.1 0.10/0.17 1.6/2.2 0.015/0.11 2.2 650 0.049 39/40 20 0.9 5.0 23 (18% gap) 14 803.5 1.43 0.13/0.9 0.27/1.4 6/35 2.5/8.7 0.04/0.13 1.3/1.7 0.004/0.127 0.12 650 0.035 80/18000 80 0.97 115 4524 (53% gap) 20 3.3 0.71 1.04/2.7 1.4/4.7 39/113 2.2/2.9 0.15/0.20 2.3/2.6 0.071/0.1 10 650 0.078 81/23 18 0.89 0.5 Sept 16, 2022 J. Gao eeFACT2022, Frascati, Rome, Italy 6
CEPC TDR Parameters (50MW upgrade) ttbar Z Higgs W 2 Number of IPs Circumference [km] SR power per beam [MW] This parameter table is used by US Snowmass21 for CEPC physics performance potential evaluation 100.0 50 16.5 Half crossing angle at IP [mrad] 10.7 Bending radius [km] 180 45.5 0.037 24.68 19918 15(10% gap) 14 1339.2 1.43 60 0.13/0.9 0.27/1.4 6/35 2.5/8.7 0.04/0.13 1.3/1.7 0.004/0.127 0.12 (1cell) 120 1.8 5.94 415 385 14 27.8 0.71 90 0.33/1 0.64/1.3 15/36 2.3/3.9 0.10/0.17 1.7/2.2 0.015/0.11 2.2 (2cell) 80 Energy [GeV] Energy loss per turn [GeV] Piwinski angle Bunch number Bunch spacing [ns] Bunch population [1010] Beam current [mA] Momentum compaction [10-5] Phase advance of arc FODOs [degree] Beta functions at IP (bx/by) [m/mm] Emittance (ex/ey) [nm/pm] Beam size at IP (sx/sy) [um/nm] Bunch length (SR/total) [mm] Energy spread (SR/total) [%] Energy acceptance (DA/RF) [%] Beam-beam parameters (xx/xy) RF voltage [GV] RF frequency [MHz] Beam lifetime [min] Luminosity per IP[1034/cm2/s] 9.1 1.21 58 2640 20 5.5 0.71 90 1.04/2.7 1.4/4.7 39/113 2.2/2.9 0.15/0.20 2.3/2.6 0.071/0.1 10 (5cell) 0.357 6.08 2162 154 13.5 140.2 1.43 60 0.21/1 0.87/1.7 13/42 2.5/4.9 0.07/0.14 1.2/2.5 0.012/0.113 0.7 (2cell) CEPC Accelerator white paper to Snowss21 arXiv:2203.09451 650 18 0.8 80 20 8.3 55 26.6 191.7 Sept 16, 2022 J. Gao eeFACT2022, Frascati, Rome, Italy 7
CEPC-LINAC-TDR-POWER@30MW and 50MW TDR Power [MW] RF system RF power source Magnets Magnet power supplies Vacuum system Instrumentation Control system Mechanical systems Radiation Protection 10 Experimental devices 11 Utilities 12 General services Total CDR C. Meng 1 2 3 4 5 6 7 8 9 0.48 5.77 / 1.75 0.65 0.20 0.20 / 0.10 / 1.38 0.20 0.81 11.12 / 2.42 1.77 0.20 0.20 / 0.10 / 1.98 0.29 10.7 18.9 For 50MW operation, CEPC linac injector will use two bunch scheme, there is very small difference 30MW and 50MW operation modes for electron and positron source.
CEPC TDR Power Consumption Breakdowns@Higgs with 30GeV injection Linac and 30MW SR/beam Location and electrical demand(MW) Surface building Ring Booster LINAC BTL IR TOTAL 96.9 11.6 1.0 52.3 1.3 0.3 1.0 1.4 0.6 3.8 7.5 0.7 11.1 - 1.8 2.4 0.2 0.1 0.2 109.5 13.4 6.5 63.5 2.2 0.4 1.8 4.0 39.1 19.8 0.8 261.1 RF Power Source Cryogenic System Vacuum System Magnet Power Supplies Instrumentation Radiation Protection Control System Experimental devices Utilities General services RF system TOTAL 1.1 1.1 0.3 0.6 0.0 0.0 4.0 1.2 0.2 31.8 7.2 3.5 2.0 0.3 0.8 18.9 0.6 0.2 12.0 203.4 18.2 1.8 6.8 12.0 Sept 16, 2022 J. Gao eeFACT2022, Frascati, Rome, Italy 9
CEPC TDR Power Consumption Breakdowns@Higgs with 30GeV injection Linac and 50MW SR/beam Location and electrical demand(MW) Surface building Ring Booster LINAC BTL IR TOTAL 161.5 15.5 1.0 52.3 1.3 0.3 1.0 1.4 0.6 3.8 7.5 0.7 11.1 - 1.8 2.4 0.2 0.1 0.2 174.1 17.9 6.5 63.5 2.2 0.4 1.8 4.0 49.7 19.8 0.8 340.7 1 2 3 4 5 6 7 8 9 RF Power Source Cryogenic System Vacuum System Magnet Power Supplies Instrumentation Radiation Protection Control System Experimental devices Utilities General services RF system TOTAL 1.7 1.1 0.3 0.6 0.0 0.0 4.0 1.2 0.2 42.4 7.2 3.5 2.0 0.3 0.8 18.9 0.6 0.2 12.0 10 11 12 282.4 18.2 1.8 7.4 12.0 Sept 16, 2022 J. Gao eeFACT2022, Frascati, Rome, Italy 10
CEPC TDR Power Consumption Breakdowns@ttbar with 30GeV injection Linac and 50MW SR/beam Location and electrical demand(MW) Surface building Ring Booster LINAC BTL IR TOTAL 161.5 25.2 2.0 118.8 1.3 0.3 1.0 1.4 0.6 3.8 16.8 0.7 11.1 - 1.8 2.4 0.2 0.1 0.2 174.1 26.9 7.6 1 2 3 4 RF Power Source Cryogenic System Vacuum System Magnet Power Supplies 1.1 1.1 0.3 139.3 2.2 0.4 1.8 4.0 52.0 19.8 0.8 428.9 5 6 7 8 9 Instrumentation Radiation Protection Control System Experimental devices Utilities General services RF system TOTAL 0.6 0.0 0.0 4.0 1.2 0.2 44.7 7.2 3.5 2.0 0.3 0.8 18.9 0.6 0.2 12.0 10 11 12 361.9 27.5 1.8 6.8 12.0 Sept 16, 2022 J. Gao eeFACT2022, Frascati, Rome, Italy 11
CEPC TDR Power Consumption Breakdowns@Z with 30GeV injection Linac and 30MW SR/beam Location and electrical demand(MW) Surface building Ring Booster LINAC BTL IR TOTAL 96.9 4.1 1.0 9.6 1.3 0.3 1.0 0.1 0.6 3.8 1.4 0.7 11.1 - 1.8 2.4 0.2 0.1 0.2 108.1 5.9 6.5 14.7 2.2 0.4 1.8 4.0 35.5 19.8 0.8 199.7 1 2 3 4 5 6 7 8 9 RF Power Source Cryogenic System Vacuum System Magnet Power Supplies Instrumentation Radiation Protection Control System Experimental devices Utilities General services RF system TOTAL 1.1 1.1 0.3 0.6 0.0 0.0 4.0 1.2 0.2 28.1 7.2 3.5 2.0 0.3 0.8 18.9 0.6 0.2 12.0 10 11 12 149.4 10.8 1.8 6.8 12.0 Sept 16, 2022 J. Gao eeFACT2022, Frascati, Rome, Italy 12
Snowmass Luminosity and Power Consumption Evaluations (CEPC) Y.W.Wang The items listed in the Snowmass Luminosity Power table are less than the complete power bugets for a real machine on site Proposal name Beam energy [GeV] Average beam current [A or mA] SR power [MW] Collider cryo power [MW] Collider RF power [MW] Collider magnet power [MW] Cooling & ventilation power [MW] General services power [MW] Injector cryo power [MW] Injector RF power [MW] Injector magnet power [MW] Pre-injector power (where applicable) [MW] Detector power (if included) [MW] Data center power (if included) [MW] Total power [MW] Luminosity [10^(34) /cm^2/s] total 2 IP values) Total integrated luminosity / year [1/fb/yr] Effective physics time per year asumed/needed to achieve integrated annual luminosity [10^7 s] Energy Consumption / year [TWh] CEPC 45.5 803.5 30.0 5.2 96.9 9.8 35.5 19.8 0.6 0.1 1.4 17.7 4.0 - 191.1 230.0 29900.0 CEPC 120.0 16.7 30.0 12.7 96.9 52.6 39.1 19.8 0.6 1.4 7.5 17.7 4.0 - 252.4 10.0 1300.0 CEPC 120.0 27.8 50.0 17.2 161.5 52.6 49.7 19.8 0.6 1.4 7.5 17.7 4.0 - 332.1 CEPC 180.0 5.5 50.0 26.3 161.5 119.1 52.0 19.8 0.6 1.4 16.8 17.7 4.0 - 419.3 1.7 217.1 16.7 2171.0 1.3 0.7 1.3 0.9 1.3 1.2 1.3 1.5 Sept 16, 2022 J. Gao eeFACT2022, Frascati, Rome, Italy 13
FCC-ee power & luminosity Frank Zimmermann eeFACT 22 special session 15 September 2022
FCC-ee parameters Parameter [4 IPs, 91.1 km,Trev=0.3 ms] Z WW H (ZH) ttbar 45.6 1400 8800 2.76 0.0391 0.120/0 1170 0.15 0.8 0.71 1.42 10 34 0.004/ 0.159 4.32 / 15.2 181 86 19 / ? 80 135 1120 2.29 0.37 1.0/0 216 0.2 1 2.17 4.34 21 66 120 26.7 336 1.51 1.869 2.1/0 64.5 0.3 1 0.64 1.29 14 36 182.5 5.0 42 2.26 10.0 2.5/8.8 18.5 1 1.6 1.49 2.98 39 69 0.096/0.138 1.67 / 2.54 1.25 0.6 12 / 46 beam energy [GeV] beam current [mA] number bunches/beam bunch intensity [1011] SR energy loss / turn [GeV] total RF voltage 400/800 MHz [GV] long. damping time [turns] horizontal beta* [m] vertical beta* [mm] horizontal geometric emittance [nm] vertical geom. emittance [pm] horizontal rms IP spot size [ m] vertical rms IP spot size [nm] 0.011/0.111 3.55 / 7.02 17.3 8 20 / ? 0.0187/0.129 2.5 / 4.45 7.2 3.4 10 / 19 beam-beam parameter x/ y rms bunch length with SR / BS [mm] luminosity per IP [1034cm-2s-1] tot. integr. luminosity / yr [ab-1/yr] beam lifetime rad Bhabha / BS [min]
2016 estimate (S. Aull, M. Koratzinos, F. Zimmermann et al.) subsystem Z W ZH LEP2 ? ? (av.2000*) 0.012 42 18 16 - - <10 9 16 9 120 luminosity/IP [1034cm-2s-1] collider total RF power collider cryogenics collider magnets booster RF + cryo booster magnets injector complex physics detectors (2) cooling & ventilation*** general services total 207 163 3 3 4 0 10 10 47 36 276 90 19 163 5 10 4 1 10 10 49 36 288 5 145 23 23 6 2 10 10 52 36 308 1.3 145 39 50 7 5 10 10 62 36 364 2 275
17 2022 estimates (J.-P. Burnet) Radio-frequency systems Energy loss from synchrotron radiation limited to 50MW per beam Power demand for RF Storage ring Z, W , H Z W 80 100 0.8 146 H TT Storage ring Beam Energy (GeV) PRF (MW) Klystron efficiency PRF EL (MW) 45.6 100 0.8 146 120 100 0.8 146 182.5 100 0.8 146 PRF= 100MW PEL= 100 / klystron / modulator / distribution PEL= 100 / 0.8 / 0.9 / 0.95 = 146MW Booster Z W 80 7.5 0.8 0.15 2 H TT Booster Beam Energy (GeV) PRFb (MW) Klystron efficiency Booster duty cycle PRFb EL (MW) PRF= 15% PRFstorage (1 beam) = 7.5MW 45.6 7.5 0.8 0.15 2 120 7.5 0.8 0.15 2 182.5 7.5 0.8 0.15 2 PEL= 7.5 / klystron / modulator / distribution PELav= PEL* booster duty cycle = 1.7MW The Booster duty cycle has a huge impact on its power demand. W ith a low duty cycle, the power demand is very low Electricity & Energy Management
2022 estimates (J.-P. Burnet) Storage Ring Magnet systems Energy loss in magnets Z W 80 44% 19% 2.6 4.3 3.9 3.8 H TT Storage Ring Beam Energy (GeV) Magnet current Power ratio Dipoles (MW) Quadrupoles (MW) Sextupoles (MW) Power cables (MW) Magnet losses storage ring 45.6 25% 6% 0.8 1.4 1.3 1.2 120 66% 43% 5.8 9.8 8.9 8.6 182.5 100% 100% 13.3 22.6 20.5 20 Pmagnets= 56MW from CDR Pcables= 20MW (rough estimation) PELmagnets= 76 / conversion / distribution PELmagnets= 76 / 0.9 / 0.95 = 89MW A lot of magnet families still unknown, inner triplet, single quadrupoles, octupoles, correctors 76.4 89 Total magnet losses Power demand (MW) 4.8 5.6 14.7 17.2 33.0 38.6 They should have a limited impact on the power demand <10%. Electricity & Energy Management
2022 estimates (J.-P. Burnet) Cooling and Ventilation systems Electrical Power demand for cooling and ventilation systems Cooling Chillers Ventilation Total consumption (MW) POINT A B D F G H J L Power demand is constant for RF loads 1.7 0.3 1.7 0.3 1.7 3.3 1.7 5.5 1.2 1.0 1.1 1.0 1.2 2.1 1.1 2.6 1.3 1.3 1.3 1.3 1.3 2.1 1.3 2.5 4.2 2.6 4.2 2.6 4.2 7.5 4.2 10.6 It varies for cryogenics and magnets depending on the machine configuration Z, W, H, ttbar. Total 16.3 11.2 12.7 40.2 Z W 80 34 H TT 45.6 33 120 36 182.5 40.2 Beam energy (GeV) Pcv (MW) all Electricity & Energy Management
2022 estimates (J.-P. Burnet) Total power demand by machine configuration Update of FCC-ee power demand Z W 80 44% 19% 146 2 12,6 34 17 3 8 4 36 H TT Beam energy (GeV) Magnet current Power ratio PRF EL (MW) PRFb EL (MW) Pcryo (MW) Pcv (MW) PEL magnets (MW) PEL magnets (MW) Experiments (MW) Data centers (MW) General services (MW) 45.6 25% 6% 146 2 1,3 33 6 1 8 4 36 120 66% 43% 146 2 15,8 36 39 5 8 4 36 182.5 100% 100% 146 2 47,5 40.2 89 11 8 4 36 Storage Booster all all Stroage Booster Pt A & G Pt A & G The previous estimation (2018) was from 259 to 359MW Power during beam operation (MW) Average power / year (MW) 237 143 262 157 291 173 384 224
Name Beam energy [GeV] Average beam current [A or mA] Total SR power [MW] Collider cryo power [MW] Collider RF power [MW] Collider magnet power [MW] Cooling & ventilation power [MW] General services power [MW] Injector cryo power [MW] Injector RF power [MW] Injector magnet power [MW] FCC-ee 45.6 1400 100 1 146 6 33 36 1 2 0 FCC-ee 120 26.7 100 17 146 39 36 36 1 2 2 FCC-ee 182.5 5 100 50 146 89 40 36 1 2 4 Pre-injector power (where applicable) [MW] Detector power (if included) [MW] Data center power (if included) [MW] Total power [MW] Luminosity [10^(34) /cm^2/s] 10 8 4 247 193 10 8 4 301 7.7 10 8 4 390 1.3 Total integrated luminosity / year [1/fb/yr] Effective physics time per year asumed/needed to achieve integrated annual luminosity [10^7 s] Energy Consumption / year [TWh] 46000 1900 330 1.3 1.25 1.3 1.52 1.3 1.97
Main difference sources discussions Name Beam energy [GeV] Average beam current [A or mA] Total SR power [MW] Collider cryo power [MW] Collider RF power [MW] Collider magnet power [MW] Cooling & ventilation power [MW] General services power [MW] Injector cryo power [MW] Injector RF power [MW] Injector magnet power [MW] FCC-ee 45.6 1400 100 1 146 6 33 36 1 2 0 FCC-ee 120 26.7 100 17 146 39 36 36 1 2 2 FCC-ee 182.5 5 100 50 146 89 40 36 1 2 4 Pre-injector power (where applicable) [MW] Detector power (if included) [MW] Data center power (if included) [MW] Total power [MW] 10 8 4 247 10 8 4 301 10 8 4 390
Snowmass Luminosity and Power Consumption Evaluations (CEPC) Y.W.Wang The items listed in the Snowmass Luminosity Power table are less than the complete power bugets for a real machine on site Proposal name Beam energy [GeV] Average beam current [A or mA] SR power [MW] Collider cryo power [MW] Collider RF power [MW] Collider magnet power [MW] Cooling & ventilation power [MW] General services power [MW] Injector cryo power [MW] Injector RF power [MW] Injector magnet power [MW] Pre-injector power (where applicable) [MW] Detector power (if included) [MW] Data center power (if included) [MW] Total power [MW] Luminosity [10^(34) /cm^2/s] total 2 IP values) Total integrated luminosity / year [1/fb/yr] Effective physics time per year asumed/needed to achieve integrated annual luminosity [10^7 s] Energy Consumption / year [TWh] CEPC 45.5 803.5 30.0 5.2 96.9 9.8 35.5 19.8 0.6 0.1 1.4 17.7 4.0 - 191.1 230.0 29900.0 CEPC 120.0 16.7 30.0 12.7 96.9 52.6 39.1 19.8 0.6 1.4 7.5 17.7 4.0 - 252.4 10.0 1300.0 CEPC 120.0 27.8 50.0 17.2 161.5 52.6 49.7 19.8 0.6 1.4 7.5 17.7 4.0 - 332.1 CEPC 180.0 5.5 50.0 26.3 161.5 119.1 52.0 19.8 0.6 1.4 16.8 17.7 4.0 - 419.3 1.7 217.1 16.7 2171.0 1.3 0.7 1.3 0.9 1.3 1.2 1.3 1.5 Sept 16, 2022 J. Gao eeFACT2022, Frascati, Rome, Italy 23