
Consumer Preferences for Organic and Local Food in Germany
Explore consumer choices between food from different origins and production processes in Germany, comparing urban and rural preferences, as well as influences on consumer decisions. The study delves into the trade-offs consumers face when selecting between local and organic products, shedding light on purchase preferences and willingness to pay values.
Download Presentation

Please find below an Image/Link to download the presentation.
The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.
You are allowed to download the files provided on this website for personal or commercial use, subject to the condition that they are used lawfully. All files are the property of their respective owners.
The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.
E N D
Presentation Transcript
1 Local and/or organic: A study on consumer preferences for organic food and food from different origins C. Feldmann & U. Hamm Corinna Feldmann Agricultural and Food Marketing
2 Background Increasing discussions on organic and local food complementary trends or substitutional quality attributes? Gracia et al. (2014): both food quality attributes are substitutes (study on eggs in Spain) Costanigro et al. (2014): both food quality attributes are complementary (study on apples in the USA) Need for further research to clarify this discussion Corinna Feldmann Agricultural and Food Marketing
3 Research objectives Consumers choices between products from different origins and production processes Differences between urban and rural consumers and differences between consumers in North, East, West, and South Germany (very different regions with regard to purchase power, organic consumption, and regional identity) Compare purchase preferences and WTP values for four different products Influences on consumer preferences (through e.g. habits, attitudes towards local and organic food, and socio-demographic data) Information on whether consumers face a trade-off when choosing between a local and an organic product Corinna Feldmann Agricultural and Food Marketing
4 General information on study Combination of consumer survey and choice experiment 641 interviews of consumers in eight supermarkets in four regions of Germany (urban rural; North East South West) Computer-assisted self-interviewing (CASI) 631 responses, appropriate for analysis of choice experiment Four products: apples, butter, flour, and steak Design based on coefficients from pretest Four blocks (one for each product) 16 choice sets 16 choice sets per respondent (four sets per product) Corinna Feldmann Agricultural and Food Marketing
5 Sociodemographic data Compared to German average: More female than male shoppers Slightly lower mean age Slightly better education Similar income Higher average household size All 631 414 217 630 122 198 229 88 44.5 631 2 255 174 200 631 2.7 N Gender Female Male N Age 18-30 years 31-45 years 46-60 years >60 years Mean age (years) N Education No formal qualification Secondary/Intermediate College/University qualification College/University degree N Household size Mean Household net income (monthly) N 631 19 59 96 91 82 54 50 29 27 21 25 78 < 600 600 to <1,200 1,200 to<1,800 1,800 to <2,400 2,400 to <3,000 3,000 to <3,600 3,600 to <4,200 4,200 to <4,800 4,800 to <5,400 5,400 to <6,000 6,000 or more No comment Corinna Feldmann Agricultural and Food Marketing
6 Design of choice experiment Attributes: origin, type of production, price Origin: local, from Germany, from a neighbouring country, from a non-EU country Type of production: organic, non-organic Price: four levels Prices and importing countries for different products used in choice experiment Attribute level Apples Flour Butter Steak 2,49 0,69 1,29 3,49 Price 1 2,99 0,99 1,49 4,49 Price 2 3,49 1,29 1,69 5,49 Price 3 3,99 1,59 1,89 6,49 Price 4 Austria Italy Denmark France Neighb. countries Argentina Kazakstan New Zealand Australia Non-EU countries Corinna Feldmann Agricultural and Food Marketing
7 Example of a choice-set for apples (CASI) Corinna Feldmann Agricultural and Food Marketing
8 Methodological approach Choice experiment Attribute-based survey method Consumer preferences and utility (consumers choose the most preferred alternative from a set of hypothetical products) Relevance of different product attributes in comparison Choice sets are composed of three product alternatives, varying in three attributes Including a no-buy option and a binding purchase decision Theoretical framework Characteristics theory of value (Lancaster 1966) Random utility theory (Thurstone 1922); basic form: Ui= Vi+ i Corinna Feldmann Agricultural and Food Marketing
9 Random parameters logit models (RPL) Better model fit than multinomial logit models (MNL) Individual models for all four products Halton draws, 1000 pts Fixed parameters, whenever standard deviations or standard errors were insignificant Price was treated as non-random Corinna Feldmann Agricultural and Food Marketing
10 RPL models Apples Coefficient Butter Coefficient Flour Coefficient Standard Steaks Coefficient Standard Standard error 0,0958** 0,2349** Standard error 0,2725** 0,2190** error 0,2924** 0,3505** error 0,0567** 0,2402** -1,4609 4,7228 -4,6950 4,5067 -3,3135 6,4853 -0,7601 4,3746 Price Local 4,4463 0,2199** 3,6945 0,1881** 5,6878 0,3175** 3,0182 0,1847** Germany Neighb. country Organic Non- organic No. of ob- servations LL function 1,2556 2,6810 0,2022** 0,3748** 1,2632 5,7365 0,1759** 0,4280** 1,7050 0,7771 0,2481** 0,3440* 0,3774 2,4015 0,1617* 0,2713** 2,4467 0,3434** 5,5368 0,4234** 0,4633 0,3449 1,6207 0,2510** 2524 2524 2524 2524 -2.183,06 -2.191,96 -1.773,86 -2.381,18 0,376 0,374 0,493 0,319 Pseudo R Halton draws, Pts 1000 1000 1000 1000 Corinna Feldmann Statistical significance at level **<0.01, *<0.05 Fixed parameters are marked grey, random parameters are not marked. Agricultural and Food Marketing
11 Results Negative sign for price coefficients, relative importance of price varies between models Small impact of the parameter organic , exception: steaks Order of origin parameters in all models: local > from Germany > from a neighbouring country > from a non-EU country Differences between coefficients for local and other origin attributes vary between models (e.g. local Germany very small for apples, larger for steaks) Product-specific differences in preference structures Corinna Feldmann Agricultural and Food Marketing
12 RPL models for apples (rural versus urban) Rural: less than 30.000 inhabitants Urban: more than 30.000 inhabitants Apples Rural Urban Price Local German Neighbour Organic Non-organic Number of observations Log Likelihood function Pseudo-R Halton draws Pts 0,1459** 0,3495** 0,3308** 0,2956** 0,5408** 0,5053** -1,37549 4,82346 4,51133 1,44791 2,27805 1,89801 1176 -1019,257 0,3748 1000 0,1316** 0,3485** 0,3297** 0,3162** 0,5402** 0,4932** -1,65168 4,90898 4,67762 0,97724 3,27944 3,23781 1348 -1153,666 0,3826 1000 Statistical significance at level **<0.01, *<0.05 Fixed parameters are marked grey, random parameters are not marked. Corinna Feldmann Agricultural and Food Marketing
13 Results Differences in preference structure due to places of origin Smaller positive influence of organic as compared to other coefficients for rural consumers Smaller positive influence of from a neighbouring country as compared to other coefficients for rural consumers Differences are reflected in survey responses Rural consumers regard organic as less important than urban consumers Rural consumers have significantly less trust in products from neighbouring countries than urban consumers Rural consumers stay significantly longer in one region than urban consumers may influence attitude towards local food (cf. W geli & Hamm, 2013) Corinna Feldmann Agricultural and Food Marketing
14 Discussion of further models Interactions, e.g. local x organic, local x non-organic or non-EU x organic (+ marginal effects) Comparison of four products Comparison of processed vs. unprocessed and animal vs. plant products Heterogeneity in means of random parameters to determine influences related to socio-demographic data and attitudes Corinna Feldmann Agricultural and Food Marketing
15 Information on further research: http://www.uni- kassel.de/fb11agrar/en/sections/agricult ural-and-food-marketing/research.html Corinna Feldmann Agricultural and Food Marketing
16 Additional slides Corinna Feldmann Agricultural and Food Marketing
17 RPL models for butter (rural versus urban) Butter Rural Urban Organic Non-organic Local German Neighbour Price Number of observations Log Likelihood function Pseudo-R Halton draws 1000 4,98572 4,91511 4,38265 3,67577 1,24755 -4,28014 0,5289** 0,5309** 0,2685** 0,2371** 0,2191** 0,5309** 6,5205 6,24752 4,60259 3,65195 1,44784 -5,12133 0,6707** 0,6699** 0,3530** 0,2853** 0,2406** 0,4312** 1348 1176 -1157,259 0,3807 -1028,996 0,3688 1000 Corinna Feldmann Agricultural and Food Marketing
18 RPL models for flour (rural versus urban) Flour Rural Urban Organic Non-organic Local German Neighbour Price Number of observ. Log Likelihood function -988,7 Pseudo-R Halton draws, Pts 0,81266 0,71378 4,97533 4,47022 1,01739 -2,66609 1348 0,3839* 0,3709 0,3280** 0,3167** 0,2746** 0,2989** 0,63776 0,2988 5,74872 5,04129 1,57733 -2,91443 1176 -842,032 0,4835 1000 0,4605 0,4449 0,4153** 0,3989** 0,3306** 0,3596** 0,4709 1000 Corinna Feldmann Agricultural and Food Marketing
19 RPL models for steaks (rural versus urban) Steaks Rural Urban Organic Non-organic Local German Neighbour Price Number of observations1348 Log Likelihood function 1202,883 Pseudo-R Halton draws, Pts 1,89662 1,3174 4,43875 3,00984 -0,09191 -0,64948 0,3586** 0,3297** 0,3297** 0,2375** 0,2382 0,0744** 2,90169 1,89381 4,14808 2,91984 0,77762 -0,87497 1176 -1161,633 0,2875 1000 0,4120** 0,3811** 0,3363** 0,2849** 0,2296** 0,0864** 0,3563 1000 Corinna Feldmann Agricultural and Food Marketing
20 Interactions for apples Apples Coefficient 2,8680 2,4176 5,1285 4,6284 1,3039 -0,6149 St. error 0,3968** 0,3646** 0,2686** 0,2371** 0,2068** 0,1730** Coefficient 2,7256 2,2780 4,4929 4,4881 1,2779 St. error 0,3758** 0,3470** 0,2440** 0,2231** 0,2026** Coefficient 1,7376 1,5912 5,1681 4,9413 1,8688 St. error 0,4696** 0,4380** 0,3620** 0,3547** 0,3471** Organic Non-organic Local Germany Neighbour Organic x Local Non-organic x Local Organic x Non-EU Price No. of observations 2524 LL function Pseudo R Halton draws, Pts 0,5515 0,1513** 1,0331 -1,3550 2524 -2181,5690 0,3765 1000 0,4124** 0,0867** -1,5015 0,1040** -1,4417 2524 -2174,6990 0,3785 1000 0,0967** -2169,867 0,3799 1000 Corinna Feldmann Agricultural and Food Marketing
21 Interactions for butter Butter Coefficient St. error Coefficient St. error Coefficient St. error Organic 5,6016 0,4243** 5,8851 0,4552** 6,4956 0,4992** Non-organic 5,4110 0,4550** 5,6708 0,4820** 6,2260 0,4786** Local 4,4414 0,2173** 4,5242 0,2789** 4,0532 0,2576** Germany 3,6133 0,1792** 3,7054 0,1898** 3,1740 0,2403** Neighbour 1,3166 0,1596** 1,2327 0,1778** 0,6076 0,2697* Organic x Local Non-organic x Local Organic x Non-EU -0,0364 0,2306 0,0867 0,2423** -0,8930 0,3008** Price -4,5797 0,2763** -4,7748 0,2985** -4,8244 0,2805** No. of observations 2524 2524 2524 LL function -2194,4120 -2189,7640 -2188,0090 Pseudo R 0,3728 0,3742 0,3747 Halton draws, Pts 1000 1000 1000 Corinna Feldmann Agricultural and Food Marketing
22 Interactions for flour Flour Coefficient St. error Coefficient St. error Coefficient St. error Organic 0,7695 0,2974** 0,4581 0,2795 0,1204 0,3236 Non-organic 0,4529 0,4529 -0,0065 0,275 0,0628 0,3036 Local 5,5162 0,3066** 4,5793 0,2292** 4,4388 0,2613** Germany 4,7224 0,2492** 4,07922 0,1952** 3,8361 0,2511** Neighbour 1,2636 0,2109** 1,2499 0,2064** 1,2227 0,2620** Organic x Local -0,3142 0,2471 Non-organic x Local 0,857 0,3594* Organic x Non-EU 0,7197 0,3194* Price -2,7468 0,2313** -2,3075 0,2042** -2,2492 0,1734** No. of observations 2524 2524 2524 LL function -1833,248 -1873,961 -1949,038 Pseudo R 0,4761 0,4644 0,443 Halton draws, Pts 1000 1000 1000 Corinna Feldmann Agricultural and Food Marketing
23 Interactions for steaks Steaks Coefficient 2,8578 St. error 0,3095** Coefficient 2,8578 St. error 0,3095** Coefficient 3,2628 St. error 0,4349** Organic Non-organic 1,6808 0,2763** 1,6808 0,2763** 2,2695 0,3859** Local 5,013 0,3087** 4,3578 0,2696** 4,583 0,3580** Germany 3,1624 0,2002** 3,1624 0,2002** 3,1575 0,3021** Neighbour -0,6979 0,3169* -0,6979 0,3169* -0,8839 0,4025* Organic x Local Non-organic x Local Organic x Non-EU -0,6552 0,2030** 0,6552 0,2030** -2,5564 0,6488** Price No. of observations LL function -0,8393 0,0654** -0,8393 0,0654** -0,9157 0,0732** 2524 2524 2524 -2359,454 -2359,454 -2336,406 Pseudo R 0,3257 0,3257 0,3323 Halton draws, Pts 1000 1000 1000 Corinna Feldmann Agricultural and Food Marketing