
Detecting Strangeon Nuggets with Acoustic Messenger Reporter
Explore the groundbreaking research on detecting Strangeon Nuggets through acoustic methods, shedding light on their unique properties and potential implications in dark matter studies. This study delves into the motivations, introduction to Strangeon Nuggets, acoustic detection techniques, and intrinsic characteristics, providing insights into this fascinating area of astrophysics.
Download Presentation

Please find below an Image/Link to download the presentation.
The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.
You are allowed to download the files provided on this website for personal or commercial use, subject to the condition that they are used lawfully. All files are the property of their respective owners.
The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.
E N D
Presentation Transcript
Detecting Strangeon Nuggets with Acoustic Messenger Reporter: Haoyang Qi Mentor: Renxin Xu 2024 07 15 FPS13
Contents Motivations Introduction to Strangeon Nuggets (StN) Acoustic detection of StN pass-through event in normal matter Discussions and conclusions 2
Developing of idea Neutron star (Landau 1932) Quark star (Witten 1984 as a representative) Strangeon star (Xu 2003) 4
Motivations of this work Implication in: dark matter, for its low hadronic charge-mass ratio pulsar, as a probable equation of state and acoustic detection, as a new messenger 5
Strangeonization ?F= 2? ?1/3(3/4?)1/3 480 MeV/? for ? = 0.25 fm 3 Strange quark ?0 95 MeV/?2, perturbation QCD energy scale ? 1 GeV Three-flavor symmetry Xu, R., Lai, X., & Xia, C. (2021). Astron. Nachr., 342(1-2), 320-325. Yuan, W. In prep. 7
Intrinsic characteristics ?StN~ 4.2 1014g/cm3(for ? = 0.25 fm 3at ? = 0) Baryon number ?~1030(Critical baryon number ?? 109) Mass ?StN~ 1.7 106g 1/3 = 1.6 10 3cm 1/3 1/3 3?StN 4??StN ? ?StN Radius ?0= 1030 1014g/cm3 Hadronic charge-mass ratio ??=?? ?= 10 7~10 4 Farhi, E., & Jaffe, R. L. (1984). PRD, 30(11), 2379-2390. 8
Other characteristics ? = 220 km/s or 0.1? (for dark matter or merger remnant) Number density ? = 3.2 10 31cm 3(Single component, ?DM= 0.3 GeV/cm3) 1 ? ? Event rate: ?? = 7.04 10 24s 1cm 2 1030 220 km/s 2= 1.28 1018cm2, event rate is ~280 / yr) (Consider ?? 9
Magnetic field of StN Wave function of identical particles without spin-orbit coupling 1,2?1,?2,?1,?2 = ?1,2?1,?2?1(?1)?2(?2) S=1 ?1?2is exchange symmetric ?1,2?1,?2 is exchange anti-symmetric when?1= ?2, ?1,2= 0 ?emget lower Transfer from one spin direction to another kinetic energy of electron ?kget higher 10
Spontaneous magnetization of electron spin magnetic moment 1 3 2? ?2 ?em=1 3 ?? 2 ? ? (???)2+??2 2 ? ? 4??0??,??= ??, ?k= 2 4? ? ?em= ?k(Multi-body interaction and ? 1potential: ? > 1) 1 3 ?em 8? 0.064??em ? ??= ? ?? 10 MeV/? for ??=10 5 ? ?? 480 MeV/? 4? 3 ?? ?? ? After spin reverse, blue means only one spin is filled Fermi ball of electrons, gray means two spins are filled 11
Magnetic field of StN ?? ?????=4??? 2 ? ????= 0.38??em ??? ?? 4? 3?? 3 ?? ????? 4? 3?0 ?? ?StN = 2.0 1011G ? ?0= ??0 10 5 1014g/cm3 3 Take ?0= 1012G as (Surface dipole magnetic field of the StN, strangeon star may have extra magnetic field from collective movement of electrons) 12
Acoustic detection of StN pass-through event in normal matter 13
Incident and ionize 1/3 1/3, normal matter can ? ?StN ?0= 1.6 10 3cm be considered as continuous medium 1030 1014g/cm3 ?2 2??(For SiO2, ??= 7 106erg/(g K)) Aerodynamic heating ? = 1 2 ?? ? ? = 7 107K , enough to ionize 7 106erg/(g K)) 220 km/s (OVIII OIX ? = 871.4 eV = 1.011 107K) Ionization zone may be small (discuss later) 14
Magnetopause of StN 1 6 ?03 ?m 6 2?0 ????2=2?2 2?0 ?0????2 1 6 ?0, ? = ?0 3,? = 1 ?m= 1 3 1 ? ?0 ?med 1 g/cm3 ?StN ? 3 ?m= 0.316 cm 1030 1 3 1014g/cm3 1 3 1012G 220 km/s 1 ?m ?0= 196 ?0 ?med 1 g/cm3 ? 6 1012G 220 km/s ?0 ?? VanDevender, J. P., VanDevender, A. P., Sloan, T., et al. (2017). Sci. Rep., 7(1), 8758. 15
Cross section and penetration depth 2 3 1 2 ? ?0 ?med 1 g/cm3 ?StN ? 3 3 ?m= ??m2= 0.320 cm2 1030 1014g/cm3 1012G 220 km/s 2 3 1 2 ?m ?StN= 1.92 10 7cm2/g ?m= ?m????2= d?k ?0 ? ?med 1 g/cm3 ?StN ? 3 3 1030 1014g/cm3 1012G 220 km/s d?,? = 1 2 ?k=1 ? ? 2?StN?2= 4.1 1020erg 1030 220 km/s 2 3 1 3 2 2 3 2 3 ? ?StN ?0 ?med 1 g/cm3 3 (?0 220 ? = 7.88 106cm 1012G ?? 220 ) 1030 1014g/cm3 16
Penetration depth Passing through earth atmosphere: ? 1020 17
Characteristics of acoustic signal Sound pressure and energy: ?2 ?med?? 2??d? ?shock= d?sound 1 4= 0.336 ms 5 4 1014g/cm3 ?? ?shock= 1.822?m ?? ?? ????m 1 1 1 4 1 ?StN ?med 1 g/cm3 ? ? ?0 ?? ? 4 8 4 1030 1012G 1 km 1 km/s Mach shockwave 100 ? ?shock StN trajectory ? ?? Maher, R. (2006). 2006 IEEE 12th D. S. P. Workshop & 4th IEEE S. P. E. Workshop, 257 261. 19
Characteristics of acoustic signal Attenuation: geometric, scattering, and absorption (exponential decay for the last item) Absorption: viscosity, thermal conduction, and relaxation 2?med??3 [4? In pure crystal medium and pure water: 1 ?2 ?? 1 1 ?? d?sound= d?sound 0? ??, ? = + ? 3+ ? ?? 2] 1+?2?? ?> ? (? 103Hz) Sea water or real rock: not pure and uniform medium 20
Characteristics of acoustic signal Take ? 1 ms, ??= 1.5 km/s Experiments in real water: ? 9.01 103cm, d?sound= ?d??? ?noise 1 erg/cm3,? = 1.1 10 6 Critical detectable distance: 2?? ?med?? ? 9.01 103cm= 2 ??m? ?noise ? VanDevender, J. P., VanDevender, A. P., Sloan, T., et al. (2017). Sci. Rep., 7(1), 8758. 21
Acoustic critical detectable distance ? 0.0901 km) =????med?? ? = 3.66 1010km ? exp( 10 6 2???2 ? 2 3 4 3 5 3 1012G 1014g/cm3 2 ? ?0 ? ?med 1 g/cm3 ?? 1030 1 erg/cm3 ?? 1.5 km/s ?StN 1 ms ? 220 km/s Attention there are another characteristic length: 0.0901 km rather than 3.66 1010km 22
Cosmic dusts If there is atmosphere: burnt 2 ?k=1 ? ? 2?dust?2= 4.1 1020erg ?dust= ??0 1030 220 km/s 2????2,? = 1 (ram pressure) 2 3 ( 2 3 g/cm3) 2 ? ?dust ? ?med 1 g/cm3 ?dust= 3.9 1018dyn 3 1030 220 km/s 1 3 2 3 1 ?k ? ?dust 3 g/cm3 ?med 1 g/cm3 ?dust= ?dust= 106 cm 1030 25
Energy losing efficiency and accumulation in celestial bodies Ionize energy loss (~0.01 time of influence of plasma ram pressure) 1 2 1 2 ?0 1 2 ? 1 ? ?med 1 cm3 ?atom 20?u ?D= 1.26 10 7cm 2 g 107K 1 3 ?Landau ?0 ?0 = 9.48 1012G 1 3? 1 1 2 ??_atom ?=? ?0 ?0 ?atom ?Bohr = 7.52 6 1012G 1 3? 1 2 3 ??_StN ?=? ?0 ?0 ?atom ?Bohr = 3.50 3 1012G 26
Conclusions Strangeon nugget have a strong dipole magnetic field ~1012G because of spontaneous magnetization of electron spin magnetic moment. Stangeon nugget impact event may can be detected by microphone array in several km distance to the trajectory and can be distinguished from cosmic dust impact event. The radius of magnetosphere of StN passing through medium may be smaller, make StN harder to detect and will not to be trap by celestial bodies in every event. Thanks! 27