Discussion on WUR Multi-Antenna Transmission in IEEE 802.11-18

march 2018 n.w
1 / 24
Embed
Share

Explore the necessity and feasibility of cyclic shift diversity (CSD) for Wake-Up Radio (WUR) in IEEE 802.11-18 standards. Understand the role of CSD in avoiding spatial nulling and enhancing WUR performance with multiple antennas. Delve into spatial mapping techniques and considerations for WUR transmissions.

  • IEEE
  • Multi-Antenna
  • Transmission
  • CSD
  • Wake-Up Radio

Uploaded on | 0 Views


Download Presentation

Please find below an Image/Link to download the presentation.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.

You are allowed to download the files provided on this website for personal or commercial use, subject to the condition that they are used lawfully. All files are the property of their respective owners.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.

E N D

Presentation Transcript


  1. March 2018 doc.: IEEE 802.11-18/0413r0 Discussion on WUR Multi-Antenna Transmission Date: 2018-03-05 Authors: Name Affiliations Address Phone email Rui Cao Marvell 5488 Marvell Ln, Santa Clara, CA 95054 ruicao@marvell.com Sudhir Srinivasa Marvell sudhirs@marvell.com hongyuan@marvell.com Hongyuan Zhang Marvell Submission Slide 1 Rui Cao, Marvell

  2. March 2018 doc.: IEEE 802.11-18/0413r0 Introduction WUR transmitter likely shares the same radio with main WiFi radio using multiple-antennas. In WiFi main radio, cyclic shift diversity (CSD) technique is adopted to avoid unintentional spatial nulling In this contribution, we discuss the necessity and feasibility of CSD for WUR, and simulate the WUR performance with different CSD values Submission Slide 2 Rui Cao, Marvell

  3. March 2018 doc.: IEEE 802.11-18/0413r0 Review: 11n/ac/ax CSD VHT SIGA VHT STF LTF SIGB DATA LLTF LSIG LSTF Pre-VHT Portion VHT Portion From 802.11n, cyclic shift diversity (CSD) is defined for MIMO systems to avoid unintentional destructive beamforming In Pre-HT/VHT/HE portion of the packet, CSD is defined per antenna as the spatial mapping technique. In HT/VHT/HE portion, CSD is defined per-stream. Spatial mapping is up to the transmitter s design. Beamforming can be applied to get the spatial mapping/steering matrix. Submission Slide 3 Rui Cao, Marvell

  4. March 2018 doc.: IEEE 802.11-18/0413r0 WUR Multi-Antenna Transmission BPSK Mark WUR Data LLTF LSIG WUR SYNC LSTF Legacy WUR WUR packet is single-stream : both Legacy portion and WUR portion. For a WUR transmitter equipped with multiple antennas, if similar CSD design as 802.11n/ac/ax is adopted Legacy portion uses the same spatial CSD values as 802.11n/ac/ax. This is important for other main radios to correctly set CCA. WUR portion will not need per-steam CSD. WUR transmitter can determine its spatial mapping matrix based on instantaneous or statistical channel information. Submission Slide 4 Rui Cao, Marvell

  5. March 2018 doc.: IEEE 802.11-18/0413r0 WUR Spatial Mapping WUR transmitter equipped with multiple antennas may perform beamforming on WUR portion. WUR does not define explicit sounding protocol Some implicit channel information may be obtained from main radio. If beamforming is not available at a WUR transmitter, CSD can be a good spatial mapping candidate. For broadcast/multicast wake-up, CSD will also be effective. Submission Slide 5 Rui Cao, Marvell

  6. March 2018 doc.: IEEE 802.11-18/0413r0 CSD for WUR 11n/ac/ax CSD is designed according to minimum 20MHz signal bandwidth [1] The minimum shift is 50ns (<=4Tx) or 25ns(<=8Tx) The maximum shift is 200ns WUR signal bandwidth is 4MHz The resolvable channel delay is 250ns. With 11n/ac/ax per-antenna CSD, shifted delay taps from all Tx antennas are not resolvable. The spatial diversity benefit will be limited. Larger CSD values is meaningful for WUR. WUR CSD design: reuse 11n/ac/ax per-antenna CSD table [1], and WUR portion applies N times of 11n/ac/ax CSD values. For example, N = 5. Submission Slide 6 Rui Cao, Marvell

  7. March 2018 doc.: IEEE 802.11-18/0413r0 Simulation Settings WUR Packet WUR Data signal uses center 13 tones in 20MHz bandwidth Payload: 48 bits, Manchester Coding 2ms noise appended before the WUR packet BPSK Mark 2ms noise WUR Data LLTF LSIG WUR SYNC LSTF SNR defined on 20MHz noise CFO = 20ppm, fc = 2.4GHz, No phase noise Receiver Realistic AGC: entire packet is normalized to certain gain target Noise portion normalized based on the noise power WUR portion normalized by 20MHz preamble power 3th order 4MHz butterworth filter with 2.5MHz cutoff frequency 4MHz sampling rate with in-phase path Submission Slide 7 Rui Cao, Marvell

  8. March 2018 doc.: IEEE 802.11-18/0413r0 B-LOS 2x1 WUR,2x1, B-LOS 0 10 LDR: No CSD HDR: No CSD LDR: 11ac CSD HDR: 11ac CSD LDR: 5x 11ac CSD HDR: 5x 11ac CSD -1 PER 10 -2 10 -10 -5 0 5 10 15 SNR(dB) More diversity gain is achieved with 5x 11ac CSD Submission Slide 8 Rui Cao, Marvell

  9. March 2018 doc.: IEEE 802.11-18/0413r0 B-LOS 4x1 WUR,4x1, B-LOS 0 10 -1 PER 10 LDR: No CSD HDR: No CSD LDR: 11ac CSD HDR: 11ac CSD LDR: 5x 11ac CSD HDR: 5x 11ac CSD -2 10 -10 -5 0 SNR(dB) 5 10 15 ~1dB loss for HDR with 11ac CSD Huge diversity gain is achieved with 5x 11ac CSD Submission Slide 9 Rui Cao, Marvell

  10. March 2018 doc.: IEEE 802.11-18/0413r0 B-LOS 8x1 WUR,8x1, B-LOS 0 10 -1 PER 10 LDR: No CSD HDR: No CSD LDR: 11ac CSD HDR: 11ac CSD LDR: 5x 11ac CSD HDR: 5x 11ac CSD -2 10 -10 -5 0 SNR(dB) 5 10 15 More diversity gain is achieved with 5x 11ac CSD Submission Slide 10 Rui Cao, Marvell

  11. March 2018 doc.: IEEE 802.11-18/0413r0 D-NLOS 2x1 WUR,2x1, DNLos 0 10 LDR: No CSD HDR: No CSD LDR: 11ac CSD HDR: 11ac CSD LDR: 5x 11ac CSD HDR: 5x 11ac CSD -1 PER 10 -2 10 -10 -5 0 5 10 15 SNR(dB) ~0.5dB loss for HDR with 11ac CSD More diversity gain is achieved with 5x 11ac CSD Submission Slide 11 Rui Cao, Marvell

  12. March 2018 doc.: IEEE 802.11-18/0413r0 D-NLOS 4x1 WUR,4x1, DNLos 0 10 LDR: No CSD HDR: No CSD LDR: 11ac CSD HDR: 11ac CSD LDR: 5x 11ac CSD HDR: 5x 11ac CSD -1 PER 10 -2 10 -10 -5 0 5 10 15 SNR(dB) More diversity gain is achieved with 5x 11ac CSD Submission Slide 12 Rui Cao, Marvell

  13. March 2018 doc.: IEEE 802.11-18/0413r0 D-NLOS 8x1 WUR,8x1, DNLos 0 10 LDR: No CSD HDR: No CSD LDR: 11ac CSD HDR: 11ac CSD LDR: 5x 11ac CSD HDR: 5x 11ac CSD -1 PER 10 -2 10 -10 -5 0 5 10 15 SNR(dB) More diversity gain is achieved with 5x 11ac CSD Submission Slide 13 Rui Cao, Marvell

  14. March 2018 doc.: IEEE 802.11-18/0413r0 Discussion It is important to inherit the CSD design on the Legacy portion for CCA. CSD does not need to be mandated for the WUR portion. CSD can be a good candidate for WUR portion when beamforming is not available. If CSD is applied, 11n/ac/ax CSD table is not effective for WUR portion to achieve spatial diversity. Even performance degradation is observed for some cases. Evaluated larger CSD values using N times of 11n/ac/ax CSD values Simulations with N=5 shows very good diversity gain Submission Slide 14 Rui Cao, Marvell

  15. March 2018 doc.: IEEE 802.11-18/0413r0 Straw Poll 1 Do you agree that the Legacy portion of an 11ba multi- antenna transmission uses spatial mapping with the same pre-VHT CSD table in [1]? Y: N: A: Submission Slide 15 Rui Cao, Marvell

  16. March 2018 doc.: IEEE 802.11-18/0413r0 Straw Poll 2 Do you agree that for the WUR portion of an 11ba multi-antenna transmission, the standards Option A: do not mandate any spatial mapping technique Option B: mandate using CSD Y: N: A: Submission Slide 16 Rui Cao, Marvell

  17. March 2018 doc.: IEEE 802.11-18/0413r0 Straw Poll 3 Do you agree that 11ba CSD values to be 5 times of pre- VHT CSD values as in Table 21.10 of IEEE P802.11- REVmc/D8.0? Y: N: A: Submission Slide 17 Rui Cao, Marvell

  18. March 2018 doc.: IEEE 802.11-18/0413r0 Reference [1] Table 21.10, IEEE P802.11-REVmc/D8.0 Submission Slide 18 Rui Cao, Marvell

  19. March 2018 doc.: IEEE 802.11-18/0413r0 Appendix Submission Slide 19 Rui Cao, Marvell

  20. March 2018 doc.: IEEE 802.11-18/0413r0 UMi-NLOS 2x1 WUR,2x1, UMi-NLOS 0 10 -1 PER 10 LDR: No CSD HDR: No CSD LDR: 11ac CSD HDR: 11ac CSD LDR: 5x 11ac CSD HDR: 5x 11ac CSD -2 10 -10 -5 0 5 10 15 SNR(dB) Submission Slide 20 Rui Cao, Marvell

  21. March 2018 doc.: IEEE 802.11-18/0413r0 UMi-NLOS 4x1 WUR,4x1, UMi-NLOS 0 10 -1 PER 10 LDR: No CSD HDR: No CSD LDR: 11ac CSD HDR: 11ac CSD LDR: 5x 11ac CSD HDR: 5x 11ac CSD -2 10 -10 -5 0 5 10 15 SNR(dB) Submission Slide 21 Rui Cao, Marvell

  22. March 2018 doc.: IEEE 802.11-18/0413r0 AWGN: DFT 2x1 WUR,2x1, AWGN-DFT 0 10 -1 10 PER -2 10 LDR: No CSD HDR: No CSD LDR: 11ac CSD HDR: 11ac CSD LDR: 5x 11ac CSD HDR: 5x 11ac CSD -3 10 -10 -5 0 5 10 15 SNR(dB) Submission Slide 22 Rui Cao, Marvell

  23. March 2018 doc.: IEEE 802.11-18/0413r0 AWGN: DFT 4x1 WUR,4x1, AWGN-DFT 0 10 -1 PER 10 LDR: No CSD HDR: No CSD LDR: 11ac CSD HDR: 11ac CSD LDR: 5x 11ac CSD HDR: 5x 11ac CSD -2 10 -10 -5 0 5 10 15 SNR(dB) Submission Slide 23 Rui Cao, Marvell

  24. March 2018 doc.: IEEE 802.11-18/0413r0 AWGN: DFT 8x1 WUR,8x1, AWGN-DFT 0 10 -1 10 PER -2 10 LDR: No CSD HDR: No CSD LDR: 11ac CSD HDR: 11ac CSD LDR: 5x 11ac CSD HDR: 5x 11ac CSD -3 10 -10 -5 0 5 10 15 SNR(dB) Submission Slide 24 Rui Cao, Marvell

Related


More Related Content