Effective Back Pain Relief Exercises and Approaches

slide1 n.w
1 / 51
Embed
Share

Discover a comprehensive guide to back pain relief exercises and approaches, including William's exercises, McKenzie approaches, and new approaches for lower back pain. Learn about stabilization exercises, movement impairment syndrome, centralization, peripheralization, and symptom severity management. Explore exercises like Partial Sit Up, Posterior Pelvic Tilt, Knee to Chest, and more for improving back health and reducing discomfort.

  • Back Pain Relief
  • Exercise Approaches
  • McKenzie Method
  • Stabilization Exercises
  • Lower Back Pain

Uploaded on | 0 Views


Download Presentation

Please find below an Image/Link to download the presentation.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.

You are allowed to download the files provided on this website for personal or commercial use, subject to the condition that they are used lawfully. All files are the property of their respective owners.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.

E N D

Presentation Transcript


  1. : . . : - - - - - - - - ...

  2. : : 12 : 12 4 Ext Bias LBP Flx Bias LBP : Non W.B Bias LBP : :

  3. : William s Exercises I. II. McKenzie Approaches III. New Approaches a) Stabilization Exercises b) Movement Impairment Syndrome (MIS)

  4. 1. Williams Exercises : : : :

  5. I. Partial Sit Up . Back . Down

  6. II. Posterior pelvic tilt .

  7. III. Knee to Chest

  8. .IV .

  9. .V

  10. .VI

  11. 2. McKenzie Approaches : : : Centralization & Peripheralization Symptom severity

  12. I. Lying Face Down 5 - 4 8 - 6 ) 2 (

  13. II. Lying Face Down in Extension 1 5 .

  14. III. Extension in Lying . . . . : 2 - 1 . .

  15. IV. Extension in Standing . . 2 - 1 . . 3 . . :

  16. V. Flexion in Lying . . . . 4 - 3 . 6 - 5 . . 3 .

  17. VI. Flexion in Sitting . . . . . 5 4 - 3 . 3 6 - 5

  18. 3. New Approaches : LBP .1 .2 .3 .4 .5

  19. Core Strengthening & Stabilization in Therapeutic Exercise

  20. What is the CORE? Lumbo-pelvic-hip complex Location of center of gravity (CoG) Efficient core allows for Maintenance of normal length-tension relationships Maintenance of normal force couples Maintenance of optimal arthrokinematics Optimal efficiency in entire kinetic chain during movement Acceleration, deceleration, dynamic stabilization Proximal stability for movement of extremities

  21. Functional Anatomy 29 muscles attach to core Lumbar Spine Muscles Transversospinalis group Rotatores Interspinales Intertransversarii Semispinalis Multifidus Erector spinae Iliocostalis Longissimus Spinalis Quadratus lumborum Latissimus Dorsi

  22. Transversospinalis group Poor mechanical advantage relative to movement production Primarily Type I muscle fibers with high degree of muscle spindles Optimal for providing proprioceptive information to CNS Inter/intra-segmental stabilization Erector spinae Provide intersegmental stabilization Eccentrically decelerate trunk flexion & rotation Quadratus Lumborum Frontal plane stabilizer Works in conjunction with gluteus medius & tensor fascia latae Latissimus Dorsi Bridge between upper extremity & core

  23. Abdominal Muscles Rectus abdominus External obliques Internal obliques Transverse abdominus Work to optimize spinal mechanics Provide sagittal, frontal & transverse plane stabilization

  24. Hip Musculature Psoas Closed chain vs. open chain functioning Works with erector spinae, multifidus & deep abdominal wall Works to balance anterior shear forces of lumbar spine Can reciprocally inhibit gluteus maximus, multifidus, deep erector spinae, internal oblique & transverse abdominus when tight Extensor mechanism dysfunction Synergistic dominance during hip extension Hamstrings & superficial erector spinae May alter gluteus maximus function, altering hip rotation, gait cycle

  25. Hip Musculature Gluteus medius Frontal plane stabilizer Weakness increases frontal & transverse plane stresses (patellofemoral stress) Controls femoral adduction & internal rotation Weakness results in synergistic dominance of TFL & quadratus lumborum Gluteus maximus Hip extension & external rotation during OKC, concentrically Eccentrically hip flexion & internal rotation Decelerates tibial internal rotation with TFL Stabilizes SI joint Faulty firing results in decreased pelvic stability & neuromuscular control

  26. Hamstrings Concentrically flex the knee, extend the hip & rotate the tibia Eccentrically decelerate knee extension, hip flexion & tibial rotation Work synergistically with the ACL to stabilize tibial translation All muscles produce & control forces in multiple planes

  27. The CORE Functions & operates as an integrated unit Entire kinetic chain operates synergistically to produce force, reduce force & dynamically stabilize against abnormal force In an efficient state, the CORE enables each of the structural components to operate optimally through: Distribution of weight Absorption of force Transfer of ground reaction forces Requires training for optimal functioning! Train entire kinetic chain on all levels in all planes

  28. Neuromuscular efficiency Ability of CNS to allow agonists, antagonists, synergists, stabilizers & neutralizers to work efficiently & interdependently Established by combination of postural alignment & stability strength Optimizes body s ability to generate & adapt to forces Dynamic stabilization is critical for optimal neuromuscular efficiency Rehab generally focuses on isolated single plane strength gains in single muscles Functional activities are multi-planar requiring acceleration & stabilization Inefficiency results in body s inability to respond to demands Can result in repetitive microtrauma, faulty biomechanics & injury Compensatory actions result

  29. Core Stabilization Concepts A specific core strengthening program can: IMPROVE dynamic postural control Ensure appropriate muscular balance & joint arthrokinematics in the lumbo-pelvic-hip complex Allow for expression of dynamic functional performance throughout the entire kinetic chain Increase neuromuscular efficiency throughout the entire body Spinal stabilization Must effectively utilize strength, power, neuromuscular control & endurance of the prime movers Weak core = decreased force production & efficiency Protective mechanism for the spine Facilitates balanced muscular functioning of the entire kinetic chain Enhances neuromuscular control to provide a more efficient body positioning

  30. Postural Considerations Core functions to maintain postural alignment & dynamic postural equilibrium Optimal alignment = optimal functional training and rehabilitation Segmental deficit results in predictable dysfunction Serial distortion patterns Structural integrity of body is compromised due to malalignment Abnormal forces are distributed above and below misaligned segment

  31. Neuromuscular Considerations Enhance dynamic postural control with strong stable core Kinetic chain imbalances = deficient neuromuscular control Impact of low back pain on neuromuscular control Joint/ligament injury neuromuscular deficits Arthrokinetic reflex Reflexes mediated by joint receptor activity Altered arthrokinetic reflex can result in arthrogenic muscle inhibition Disrupted muscle function due to altered joint functioning

  32. Assessment of the Core Muscle imbalances Arthrokinematic deficits Core Strength Endurance Neuromuscular control Power Overall function of lower extremity kinetic chain

  33. Straight-Leg Lowering Test for Core Strength Supine w/ knees in extension BP cuff placed under lumbar spine (L4-L5) & raised to 40 mmHg With knees extended, hips to 90 Performs drawing in maneuver (belly button to spine) & then flattens back maximally into the table & BP cuff Lower legs to table while maintaining flat back Hip angle is measured with goniometer

  34. Abdominal Neuromuscular Control Test Supine w/ knees & hips in 90 BP cuff placed under lumbar spine (L4-L5) & raised to 40 mmHg Performs drawing in maneuver (belly button to spine) Lower legs until pressure decreases Assesses lumbar spine moving into extension (ability of lower abs wall to preferentially stabilize the lumbo-pelvic-hip complex) Hip flexors begin to work as stabilizers Increases anterior shear forces & compressive forces at L4-L5 Inhibits transversus abdominis, internal oblique & multifidus

  35. Core Muscular Endurance & Power Endurance Erector spinae performance Prone with hands behind head & spine extended 30 Measure ability to sustain position with goniometer Utilize axilla and table for frame of reference Hold & maintain as long as they can Power Backwards, overhead medicine ball jump & throw Assessment of total body power production

  36. Lower extremity functional profiles Isokinetic tests Balance tests Jump tests Power tests Sports specific functional tests Kinetic chain assessment must assess all areas of potential deficiency

  37. Guidelines for Core Stabilization Training Perform comprehensive evaluation Muscles imbalances, myokinematic deficits, arthrokinematic deficits, core strength/ neuromuscular control/power, overall kinetic chain function Muscle imbalances & arthrokinematic deficits must be corrected prior to initiating aggressive training Program Requirements Systematic Progressive Functional

  38. Emphasize muscle contraction spectrum Concentric (force production) Eccentric (force reduction) Isometric (dynamic stabilization) Begin program in most challenging environment that can be controlled Must be challenging with progression through function continuum Program Variation Plane of motion Range of motion Loading (physioball, med. ball, body blade, weight vest, tubing) Body position Amount of control & speed Feedback Duration and frequency (sets, reps, time under tension)

  39. Specific Guidelines Exercise Selection Proprioceptively rich program Safe Challenging Stress multiple planes Incorporate multi-sensory environment Activity specific Progressive functional continuum Slow to fast Simple to complex Known to unknown Low force to high force Eyes open to eyes closed Static to dynamic

  40. Goal of program - develop optimal levels of functional strength & stabilization Focus on neural adaptations instead of absolute strength gains Increase proprioceptive demands Quality not quantity Poor technique and neuromuscular control results in poor motor patterns & stabilization Focus on function

  41. Questions to Ask Yourself Is it dynamic? Is it multiplanar? Is it multidimensional? Is it proprioceptively enriched? Is it systematic? Is it progressive? Is it activity-specific? Is it based on functional anatomy & science?

  42. Core Stabilization Training Program Level I: Stabilization

  43. Level I: Stabilization

  44. Level I: Stabilization

  45. Level I: Stabilization

  46. Level II: Stabilization and Strength

  47. Level III: Integrated Stabilization Strength

  48. Level IV: Explosive Stabilization

  49. References Prentice, W.E. (2004). Rehabilitation Techniques for Sports Medicine & Athletic Training, 4thed. Houglum, P. (2005). Therapeutic Exercise for Musculoskeletal Injuries, 2nded. Kisner, C. & Colby, L.A. (2002). Therapeutic Exercise: Foundations & Techniques, 4thed.

Related


More Related Content