
Electrodynamics Lecture Highlights: Reflectivity, Fresnel Equations & Wave Behavior
Explore topics such as reflectivity of plane waves, complex response functions, Fresnel Equations, behaviors of s and p polarization, Brewster's angle, total internal reflection, electromagnetic plane waves in isotropic media, and reflection/refraction at interfaces between dielectrics. Gain insights into the behavior of electromagnetic waves in different scenarios.
Download Presentation

Please find below an Image/Link to download the presentation.
The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.
You are allowed to download the files provided on this website for personal or commercial use, subject to the condition that they are used lawfully. All files are the property of their respective owners.
The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.
E N D
Presentation Transcript
PHY 712 Electrodynamics 9-9:50 AM Olin 105 Plan for Lecture 18: Complete reading of Chapter 7 1. Comments on reflectivity of plane waves 2. Summary of complex response functions for electromagnetic fields 02/25/2019 PHY 712 Spring 2019 -- Lecture 18 1
02/25/2019 PHY 712 Spring 2019 -- Lecture 18 2
Some comments on the Fresnel Equations 1. Different behaviors of s and p polarization 2. Brewster s angle 3. Total internal reflection 02/25/2019 PHY 712 Spring 2019 -- Lecture 18 3
Review: Electromagnetic plane waves in isotropic medium with real permeability and permittivity: . ( ( ) ( ) ,t c electromag plane for vector Poynting ) ( ) ( ) k r ic n ct = = 2 2 E r E , t e n c 0 n ( ) ,t r k k = = B r E r E ,t netic waves : 2 E 2 n 1 k k 2 0 c = = S E 0 2 avg electromag plane for density Energy netic waves : 1 2 = E u 0 2 avg 02/25/2019 PHY 712 Spring 2019 -- Lecture 18 4
Review: Reflection and refraction of plane electromagnetic waves at a plane interface between dielectrics (assumed to be lossless) = = = ' ' ' n n k i n R = sin 'sin i n kR ki i R k k = = nc i R k ' = ' n c 02/25/2019 PHY 712 Spring 2019 -- Lecture 18 5
Review: Reflection and refraction between two isotropic media z k x ki kR i R Reflectanc transmitt e, ance : 2 2 S z S z ' i ' ' cos E E n = = = = 0 0 R T R R S z S z ' cos E E n i 0 + 0 i i i = Note that R T 1 02/25/2019 PHY 712 Spring 2019 -- Lecture 18 6
For s-polarization (E perpendicular to plane of incidence) cos ' cos n i n ' 2 cos E E n i ' = = 0 0 R E E + + cos ' cos cos ' cos n i n n i n 0 0 i i ' ' = 2 2 2 Note that : ' cos ' sin n n n i For p-polarization (E in plane of incidence) 2 ' cos 'cos n i nn ' 2 'cos E E E E nn i ' = = 0 0 R + + 2 2 ' cos 'cos ' cos 'cos n i nn n i nn 0 0 i i ' ' = 2 2 2 Note that: 'cos ' sin n n n i 02/25/2019 PHY 712 Spring 2019 -- Lecture 18 7
Reflectance for s-polarization 2 2 2 2 cos ' sin n i n n i 2 E E ' = = 0 R R s + 2 2 2 cos ' sin n i n n i 0 i ' Reflectance for p-polarization 2 n n n n 2 2 2 'cos ' sin n i n n i 2 E E ' ' = = R 0 R p + 2 2 2 'cos ' sin n i n n i 0 i ' ' 02/25/2019 PHY 712 Spring 2019 -- Lecture 18 8
= = = Example for ; 1 and ' 1. 5 n n s-polarization p-polarization 02/25/2019 PHY 712 Spring 2019 -- Lecture 18 9
n=1 surface normal ki kR i n >1 Polarization due to reflection from a refracting surface = = Brewster's angle: for , R B i ( ) B i 0 i p 2 n n n n 2 2 2 'cos ' sin n i n n i 2 ' n n E E ' ' = = 1 For , t an i = = R 0 R B p + 2 2 2 ' cos ' sin n i n n i 0 i ' ' 02/25/2019 PHY 712 Spring 2019 -- Lecture 18 10
Reflection and refraction between two isotropic media -- continued z ( ( ) ,t r B each wave For : ( ) ( ) ) k r ic n ct = = 2 2 E r E , t e n c 0 n ( ) ,t r ( ) ,t r k k k = = E E x c ki kR i R Matching condition interface at : = 2 2 2 ' cos ' sin n n n i ' n 1 If , ' n for sin , n i i Total internal reflection: 0 n refracted longer no field propagates medium in ' ' 2 sin i = = 2 2 2 ' cos ( E sin ' 1 n i n i n i n 2 sin i 0 2 ) sin i n 1 z ( ) ( ) c 2 k sin i r i n ct = E r ' , ' t e e 0 || c 0 02/25/2019 PHY 712 Spring 2019 -- Lecture 18 11
Example of total internal reflection n =1 and n=1.5 i0 = sin-1(1/1.5)=41.81o Relative transmitted intensity i=42o i=50o i=90o z/ Transmitted illumination confined within a few wavelengths of the surface. 02/25/2019 PHY 712 Spring 2019 -- Lecture 18 12
TIRF (total internal reflection fluorescence) www.nikon.com/products/microscope-solutions/bioscience.../nikon_note_10_lr.pdf 02/25/2019 PHY 712 Spring 2019 -- Lecture 18 13
Design of TIRF device using laser and high power lens 02/25/2019 PHY 712 Spring 2019 -- Lecture 18 14
02/25/2019 PHY 712 Spring 2019 -- Lecture 18 15
Special case: normal incidence (i=0, =0) ' n n ' 2 E E n ' = = 0 0 R E E + ' + ' n n n n 0 0 i i ' ' Reflectanc transmitt e, ance : 2 ' n n 2 E ' = = 0 R R E + ' n n 0 i ' 2 2 ' ' 2 ' E n n n = = 0 T ' ' E n n + ' n n 0 i PHY 712 Spring 2013 -- Lecture 19 ' PHY 712 Spring 2019 -- Lecture 18 02/25/2019 16 16
Extension to complex refractive index n= nR + i nI = = = + Suppose , ' real, ' ' ' n n n in R I Reflectanc normal at e incidence : 2 ' n n ( ( ) ) ( ( ) ) 2 2 2 + ' ' E n n n ' = = = 0 R R R I 2 2 + + E ' ' n n n + ' n n 0 i R I ' Note that for ' ' : n n n I R R 1 02/25/2019 PHY 712 Spring 2019 -- Lecture 18 17
Origin of imaginary contributions to permittivity -- Review: Drude model dielectric function: ( ) i i m 0 0 2 1 q = + 1 i N f i 2 2 i i i ( ) 0 ( ) 0 = + R I i ( ) 0 2 2 2 q i i = + 1 i R N f ( ) i 2 m 2 + 2 2 2 0 i i i ( ) 0 2 q i = i i I N f ( ) i 2 m 2 + 2 2 2 0 i i i 02/25/2019 PHY 712 Spring 2019 -- Lecture 18 18
Drude model dielectric function: ( ) R 0 ( ) I 0 02/25/2019 PHY 712 Spring 2019 -- Lecture 18 19
Drude model dielectric function some analytic properties: ( ) 2 1 q 1 = + i N f i i 2 i 2 m i 0 0 i i ( ) 2 1 q 1 For i N f i i 2 m i 0 0 i 2 P 1 2 02/25/2019 PHY 712 Spring 2019 -- Lecture 18 20
Analysis for Drude model dielectric function continued -- Analytic properties: ( ) 1 0 0 P i P z z z f ( ) 2 1 2 q z i = = i f z N f i 2 i m z iz i i ( ) 2 = 2 has poles at 0 iz P i 2 = 2 i i i z i P 2 2 ( ) z ) ( ) z ( ) z Note that ( 0 analytic is for 0 f P P pz ( ) analytic f z ( ) pz 02/25/2019 PHY 712 Spring 2019 -- Lecture 18 21
Because of these analytic properties, Cauchys integral theorem results in: Kramers-Kronig transform for dielectric function: ( ) 0 ( ) 0 1 ' 1 = d 1 ' R I P - ' ( ) with ( ) ; 1 ' 1 = d ' 1 I R P - = ' 0 0 ( ) ( ) ( ) ( ) = R R I I 02/25/2019 PHY 712 Spring 2019 -- Lecture 18 22
Further comments on analytic behavior of dielectric function between ip relationsh Causal" " and E fields D : ( ) ( ) ( ) ( ) 0 = + D r E r E r , , , t t d G t 0 ( ) ( ) 0 = ie 1 d G 0 Some details: Consider a convolution integral such as = ( ) ( ') ( g t h t ') ' where the functions ( ), ( ), and ( ) f t t dt f t g t h t are all well-defined functions with Fourier transforms such as 1 = = ' i t i t ( ) ( ') f t e ' ( ) ( ) f dt f t f e d 2 = ( ) ( It follows that: ( f ) ) g h 02/25/2019 PHY 712 Spring 2019 -- Lecture 18 23
Further comments on analytic behavior of dielectric function E D "Causal" relationship between and fields: = + ( ) ( ) ( ) ( ) d G D r E r E r , , , t t t 0 0 ( ) ( ) 1 ( ) = = d G i i ( ) 1 ( G ) = 1 G e d e 2 ( ) 0 0 0 2 1 q m N = For 1 f i i 2 i 2 i i 0 0 i i ( ) sin 2 q m N = /2 i ( ) ( ) G f e i i i i 0 i i 2 i 2 i where / 4 i 02/25/2019 PHY 712 Spring 2019 -- Lecture 18 24
Some details ( ) 1 1 = i iz ( ) 1 = ( ) f z e G e d dz 2 2 0 ( ) z 2 1 q m ( ) f z = = Let 1 i N f i = 2 i 2 z iz i 0 z 0 i i ( ) f z 2 i 2 has poles at 0 z iz P P P i 2 2 = = 2 i 2 i or i i i i z i z i P P 2 2 2 2 02/25/2019 PHY 712 Spring 2019 -- Lecture 18 25
1 = = iz ( ) ( ) f z e Res( ) G dz i z P 2 P For >0, For <0, iz no 0 ok e iz e G = ( ) 0 for 0 zP iz For >0, For <0, 0 ok no e e iz 02/25/2019 PHY 712 Spring 2019 -- Lecture 18 26
1 = = iz ( ) ( ) f z e Res( ) G dz i z P 2 P 2 i m ( ) z 1 q ( ) f z = = Let 1 N f i = 2 i 2 z iz i 0 z 0 i i ( ) f z 2 i 2 has poles at 0 z iz P P P i 2 2 = = 2 i 2 i or i i i i z i z i P P 2 2 2 2 ( ) sin 2 q m N = / 2 i ( ) ( ) G f e i i i i 0 i i 2 i 2 i 2 i 2 i where / 4 assuming / 4 0 i 02/25/2019 PHY 712 Spring 2019 -- Lecture 18 27