Exponential Functions and Their History in Mathematics

fleurance 11 08 16 n.w
1 / 24
Embed
Share

Explore the concept of exponential functions, their historical development, equations, and applications in mathematics. Learn about the fundamental properties, derivatives, complex exponential numbers, and series expansions. Dive deeper into the fascinating world of exponentials with this insightful content from Fleurance's JMLL conference in 2016.

  • Exponential Functions
  • Mathematics History
  • Equations
  • Derivatives
  • Complex Numbers

Uploaded on | 1 Views


Download Presentation

Please find below an Image/Link to download the presentation.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.

You are allowed to download the files provided on this website for personal or commercial use, subject to the condition that they are used lawfully. All files are the property of their respective owners.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.

E N D

Presentation Transcript


  1. Fleurance, 11/08/16 JMLL/Exponentielle 0

  2. Exponentielle Jean-Marc L vy-Leblond Fleurance, 11/08/16 JMLL/Exponentielle 1

  3. Exponenciel Jean-Marc L vy-Leblond Fleurance, 11/08/16 JMLL/Exponentielle 2

  4. Attention, fil rouge ! Pr requis : Tout savoir d j sur l exponentielle Ou, au moins, conna tre : la notion de fonction la d rivation les nombres complexes (programme de Terminale S) Fleurance, 11/08/16 JMLL/Exponentielle 3

  5. 1. Motivations 1. Un brin d histoire 2. L quation fonctionnelle de la fonction exponentielle 1. L quation diff rentielle et sa r solution en s rie enti re 2. Le logarithme naturel 3. La constante e[6 . Bonus : fractions continues] 4. L exponentielle complexe 5. G n ralisation : exponentielles de matrices et d op rateurs 6. S ries de Fourier Fleurance, 11/08/16 JMLL/Exponentielle 4

  6. Le clou de la sance : ii=e-p/2 eip=-1 Fleurance, 11/08/16 JMLL/Exponentielle 5

  7. 1.Motivations Fleurance, 11/08/16 JMLL/Exponentielle 6

  8. 2. Un brin dhistoire Puissances : carr saxa, cubes axaxa, etc. Chuquet 1484, Stifel 1584 : puissances fractionnaires, n gatives, mais pas de notation adapt e Descartes 1637 : a2, a3 puissances num riques enti res seulement Wallis 1657, Newton 1676, Leibniz 1678 puissances fractionnaires : a1/2= puissances litt rales variables : ap apxaq= ap+q Fleurance, 11/08/16 JMLL/Exponentielle 7

  9. 3. Lquation fonctionnelle de la fonction exponentielle multiplication < > addition ? ? f(x) f(y)= f(x+y) Fleurance, 11/08/16 JMLL/Exponentielle 8

  10. 4. Lquation diffrentielle et sa r solution en s rie enti re ? f '(x)= lf(x) exp(x)=1+x+x2 +x3 + +xn n!+ 2 6 Fleurance, 11/08/16 JMLL/Exponentielle 9

  11. Le graphe de la fonction exponentielle Fleurance, 11/08/16 JMLL/Exponentielle 10

  12. Fleurance, 11/08/16 JMLL/Exponentielle 11

  13. Les premiers termes de la s rie exponentielle Fleurance, 11/08/16 JMLL/Exponentielle 12

  14. 5. La constante e Leonhard Euler, 1727 Leonhard Euler, 1727 Meditatio Meditatio in (M ditation sur des exp riences r centes de tir au canon) in Experimenta Experimenta explosione explosione tormentorum tormentorum nuper nuper instituta instituta Fleurance, 11/08/16 JMLL/Exponentielle 13

  15. Fleurance, 11/08/16 JMLL/Exponentielle 14

  16. e=1 0!+1 1!+1 2!+1 3!+ e = 2.71828182845904523536028747135266249775724709369995 e = = 3 e3= 20,085 Fleurance, 11/08/16 JMLL/Exponentielle 15

  17. Dveloppement de e en fraction continue Fleurance, 11/08/16 JMLL/Exponentielle 16

  18. 6. Le logarithme naturel Fleurance, 11/08/16 JMLL/Exponentielle 17

  19. 7. Lexponentielle complexe z = x+iy z = z eiargz z y x Fleurance, 11/08/16 JMLL/Exponentielle 18

  20. eip=-1 . Fleurance, 11/08/16 JMLL/Exponentielle 19

  21. Re[exp(x+iy)] =excosy Fleurance, 11/08/16 JMLL/Exponentielle 20

  22. 8. Exponentielles de matrices, op rateurs, etc. Fleurance, 11/08/16 JMLL/Exponentielle 21

  23. 8. Exponentielles de matrices, op rateurs, etc. Attention la non-commutativit ! Formule de Campbell-Baker-Hausdorff eXeY= X +Y +1 +1 + 2(XY -YX) 12(X2Y -2XYX +YX2) Fleurance, 11/08/16 JMLL/Exponentielle 22

  24. Et, comme cerise sur le gteau, une autre jolie formule reliant e et + dt e-t2 = p - Fleurance, 11/08/16 JMLL/Exponentielle 23

Related


More Related Content