Gage Repeatability and Reproducibility Experiment for Measuring Drill Holes

2 way random effects anova n.w
1 / 10
Embed
Share

Explore a 2-way random effects ANOVA study on the measured diameter of drill holes in wood parts, addressing gage repeatability and reproducibility. The experiment examines factors A (Drill Hole) and B (Measurer) with 10 and 3 levels, respectively, using 3 replicates per measurer/hole. The statistical model, variance analysis, and expected mean squares are detailed in the study.

  • ANOVA
  • Drill Holes
  • Gage Repeatability
  • Reproducibility
  • Wood Parts

Uploaded on | 0 Views


Download Presentation

Please find below an Image/Link to download the presentation.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.

You are allowed to download the files provided on this website for personal or commercial use, subject to the condition that they are used lawfully. All files are the property of their respective owners.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.

E N D

Presentation Transcript


  1. 2-Way Random Effects ANOVA Gage Repeatability and Reproducibility Experiment for Measuring Drill Holes in Wood Parts Source: M-H. C. Li and A. Al-Refaie (2008). Improving Wooden Parts Quality by Adopting DMAIC Procedure, Quality and Reliability Engineering International, Vol. 24, pp. 351-360

  2. Data Description Gage Repeatability and Reproducibility Experiment Response: Measured Diameter of Drill Hole (10s mm) Factors: A: Drill Hole (Random Factor, a = 10 Levels) B: Measurer (Random Factor, b = 3 Levels) Replications (3 replicates per Measurer/Hole, in random order) Measurer Hole\Rep 1 2 3 4 5 6 7 8 9 10 1 1 1 2 1 3 2 1 2 2 2 3 3 1 3 2 3 3 256.0 255.8 256.1 255.7 255.7 257.2 256.6 257.2 255.1 256.1 256.1 256.2 255.8 256.3 255.6 256.7 256.3 256.6 254.6 255.5 255.7 256.3 256.1 256.2 255.9 256.8 255.9 256.9 254.6 255.7 255.6 256.5 256.2 255.7 256.4 256.8 256.1 256.8 254.7 256.2 256.2 256.4 255.9 256.3 256.2 256.7 256.3 256.7 254.4 255.9 255.9 256.3 256.1 255.9 256.7 256.4 256.6 257.3 254.9 256.4 255.7 256.7 256.2 255.9 256.8 256.5 256.9 257.2 254.7 256.1 255.9 256.6 256.4 256.2 256.2 256.3 256.4 256.7 255.4 255.7 256.2 256.4 256.7 256.3 256.5 256.7 256.8 256.9 254.9 256.2

  3. Statistical Model ( ) = + + + + = = = = = = = = 1,..., 10; 1,..., 3; 1,..., 3 90 Y i a j b k n N abn ijk i j ijk ij ( ) ( ) ( ( ) ( ) i ) ( ) 2 a 2 b 2 ab 2 ~ 0, ~ 0, ~ 0, ~ 0, NID NID NID NID i j ijk j ijk ij ij ( ) = + + + + = 0 0 0 0 + + + + = E Y E ijk i j ijk ij ( ) = + + + + = + + + + = + + + 2 a 2 b 2 ab 2 2 a 2 b 2 ab 2 0 V Y V ijk i j ijk ij + + + + + = = = = = = = 2 a 2 b 2 ab 2 ', ', ', ', ', ', ', ', ', ', ' ' i i i j i j i j i j i j j k j k j j j k k 2 a 2 b 2 ab = , COV Y Y 2 a , ' , ' k k k k i i i k k ' ' ' i j k ijk 2 b 0 , ' Analysis of Variance: ( ) ( ) ( ) a b n a 2 2 2 = = = 1 SS Y Y bn Y abn Y df a i i A A = = = = 1 1 1 1 i j k i ( ) ( ) ( ) a b n b 2 2 2 = = = 1 SS Y Y an Y abn Y df b j j B B = = = = 1 1 1 1 i j k j ( ) ( ) ( ) ( ) ( ) a b n a b a b 2 2 2 2 2 ( )( ) = + = + = 1 1 SS Y Y Y Y n Y bn Y an Y abn Y df a b ij i j ij i j AB AB = = = = = = = 1 1 1 1 1 1 1 i j k i j i j ( ) ( ) a b n a b n a b 2 2 ( ) = = = 2 1 SS Y Y Y n Y df ab n ij ij ERR ERR ijk ijk = = = = = = = = 1 1 1 1 1 1 1 1 i j k i j k i j

  4. Expected Mean Squares - I ijk E Y = = = = = E Y E Y E Y E Y ij i j n + 1 n n n n ( ) ( ) ij V Y ijk V Y = = + = + + + + + + 2 a 2 b 2 ab 2 2 a 2 b 2 ab 2 , 2 V Y COV Y Y n ' ijk ijk ijk 2 = = = = + 1 1 + 1 ' 1 k + k k k k ( ) )( ) ( = + + + = + + + 2 a 2 b 2 ab 2 2 a 2 b 2 ab 2 2 a 2 2 b 2 2 ab ) 2 1 n n n n n n n + = ) 2 2 ( 1 n 1 n n ij V Y 2 = = + + + = + + + + 2 a 2 b 2 ab 2 a 2 b 2 ab 2 V Y V Y E Y ij ij ijk 2 n n = 1 k 1 1 b n b n b n n b b n n ijk V Y = = + + 2 , 2 , V Y V Y COV Y Y COV Y Y ' ' ' i ijk ijk ijk ijk ij k = = = = = = = + = = + = ' 1 = 1 1 1 1 1 1 ' ) 1 1 ' 1 1 j k j k j k k k j j j k k ( V Y )( + ( ) ( ( ) ) + + + + + + = + + + 2 a 2 b 2 2 2 a 2 b 2 ab 2 2 a 2 2 2 a 2 2 b 2 ab 2 1 1 bn bn n b b n b n bn bn ab + 2 b 2 ab 2 b 2 ab 2 2 ( 1 2 = = + + = + + + 2 a 2 a 2 V Y E Y i i i 2 2 b n b bn + b bn 2 a 2 ab 2 ( ) 2 = + + + 2 b 2 By direct analogy: E Y j a an ( ) ( ) ( ) ( ) ( ) = + + + + + + + + + 2 a 2 b 2 ab 2 2 a 2 b 2 ab 2 2 a 2 2 b 1 1 1 0 V Y abn abn n ab b n a a bn 2 a 2 b 2 ab 2 = + + + = + + + 2 2 2 a 2 2 2 b 2 2 ab 2 ab n a bn abn abn V Y a b ab abn 2 a 2 b 2 ab 2 ( ) 2 = + + + + 2 E Y a b ab abn

  5. Expected Mean Squares - II = + a b n ( ) + + + + = 2 2 a 2 b 2 ab 2 2 1) E Y abn ijk = = = 1 1 1 i j k = + + + 2 a 2 b 2 ab 2 2 abn abn abn abn abn 2 ( ) a b 2 = + + + + + = 2 a 2 b 2 ab 2 2) E n Y abn ij n = = 1 + 1 i j = + + 2 a 2 b 2 ab 2 2 abn abn abn ab abn + 2 b 2 ab = an 2 ( ) a 2 + + + = 2 a 2 3) E bn abn Y a bn i b bn = 1 i + = + + + 2 a 2 b 2 ab 2 2 an a abn + 2 a 2 ab 2 ( ) b 2 = + + + = 2 b 2 4) E an Y abn j a an = 1 j = + + + + 2 a 2 b 2 ab 2 2 bn abn bn b abn 2 a 2 b 2 ab ( ) 2 = + + + + = 2 2 5) E abn Y abn a + b ab = + + + 2 a 2 2 ab 2 2 bn an n abn b

  6. Expected Mean Squares - III Analysis of Variance: ( = ( ) ( ) a 2 2 ) ( ) ( ) = = + + 2 a 2 ab 2 1 1 1 E SS E bn Y E abn Y a bn a n a i A = 1 i = + + 2 a 2 ab 2 1 df a E MS bn n A A = ( ) ( ) b 2 2 ( ) ( ) ( ) = = + + 2 b 2 ab 2 1 1 1 E SS E an Y E abn Y a b n b n b j B = 1 j = + + 2 b 2 ab 2 1 df b E MS an n B B ( ) ( ) ( ) ( ) a b a b 2 2 2 2 = + = E SS E n Y E bn Y E an Y E abn Y ij i j AB = = + = = 1 1 1 1 i j i j ( )( ( a ) b ( )( E MS ) = 2 ab 2 1 1 1 1 a b n a b )( ) = = + 2 ab 2 1 1 df n AB AB ( ) a b n a b 2 ( ) ( ) E MS = = = = 2 2 2 1 1 E SS E Y E n Y ab n df ab n ij ERR ERR E RR ijk = = = = = 1 1 1 1 1 i j k i j

  7. Estimating and Testing Variance Components ^ = = 2 2 E MSE MSE ^ MSAB MSE = + = 2 2 ab 2 ab E MSAB n n ^ MSA MSAB bn MSB an = + + = 2 2 ab 2 a 2 a E MSA n bn ^ MSAB = + + = 2 2 ab 2 b 2 b E MSB n an 2 k g MS i i ^ k = = = 1 i 2 * Satterthwaite Approximation for Degrees of Freedom: where df g MS ( ) * i i 2 g MS df k = 1 i i i = 1 i i ^ ^ 2 * 2 * df df ( ) 2 * Approximate 1 100% CI for : , * * 2 2 1 /2; /2; df df MSAB MSE MSA MSAB MSB MSAB = = 2 ab 2 ab AB AB A : 0 : 0 Test Stat: Rejection Region: H H F F F ( )( ) ( ) 1 , 0 AB AB ; 1 1 a b ab n = = 2 a 2 a A A A : 0 : 0 Test Stat: Rejection Region: H H F F F ( )( ) 0 A A ; 1, 1 1 a a b = = 2 b 2 b B B A : 0 : 0 Test Stat: Rejection Region: H H F F F ( )( ) 0 B B ; 1, 1 1 b a b

  8. Experimental Model/Results Source Part Operator Part:Operator Residuals Df Sum Sq 25.9721 0.7716 2.0129 4.0067 Mean Sq 2.88579 0.38578 0.11183 0.06678 9 2 18 60 Here we treat the Drill Hole as the "Product" and Measurer as the "Operator" = + + + = 2 Product 2 Operator 2 Product + = 2 Reproducibility + 2 Repeatability 2 Total 2 PxO 2 2 Gage 2 Gage 2 Reproducibility = 2 Operator + 2 Repeatability = 2 PxO 2 2 ^ ^ = = = Repeatability = = 2 2 2 0.06678 E MS MS ERR ERR 2 0.11183 0.06678 3 MS an MS MS ^ = + = = = 2 2 PxO 0.015017 PxO ERR E MS n PxO PxO n MS 2 0.38578 0.11183 10(3) ^ Operator PxO = + + 2 Operator Operator = = = 2 2 PxO 0.009132 E MS n an Operator 2 2.88579 0.11183 3(3) MS MS ^ = + + 2 Product Product = = = 2 2 PxO 0.308218 Product PxO E MS n bn Product bn 2 2 2 ^ ^ ^ Reproducibility = Operator + = 0.009132 0.015017 + = 0.024149 PxO 2 2 2 ^ ^ ^ = + Repeatability = 0.024149 0.06678 + = 0.090929 Gage Reprod ucibility

  9. Tests Concerning Variance Components 0.11183 0.06678 MS MS = = = = PxO 0 2 PxO PxO A 2 PxO : 0 : 0 : 1.6746 PxO H H TS F PxO ERR = ( ) = : 1.7784 1.6746 .0703 RR F .05;18,60 F P F PxO 18,60 0.38578 0.11183 = MS MS = = = = O 0 2 O O A 2 O : 0 : 0 : 3.4497 O H H TS F O PxO ( ) = : 3.5546 3.4497 .0539 RR F .05;2,18 F P F O 2,18 2.88579 0.11183 = MS MS = = = = 2 P 2 P P P A : 0 : 0 : 25.8052 H H TS F P 0 P PxO ( ) = : 2.4563 25.8052 .0000 RR F .05;9,18 F P F 9,18 P

  10. Approximate Confidence Intervals ( ) 2 2 0.015017 MS MS 1 3 1 3 ^ = = + = = = 0.015017 2.64 PxO ERR MS MS df PxO PxO ERR PxO 2 n 2 1 3 1 3 ( ) ( ) 0.06678 0.11183 + 18 60 ( ) 2 2 0.009132 MS MS an 1 30 1 ^ = = + = = = 0.009132 1.00 O PxO MS MS df O O PxO O 2 30 2 1 1 30 ( ) ( ) 0.11183 0.38578 30 + 2 18 ( ) 2 2 0.308218 MS MS bn 1 9 1 9 ^ = = + = = = 0.308218 8.31 PxO P MS MS df P PxO P P 2 2 1 9 1 9 ( ) ( ) 0.11183 2.88579 + 9 18 ( 8.6651 ) ( 0.1430 ) 2.64 0.015016 2.64 0.015016 2 .975;2.64 = .025;2 = 2 2 PxO 0.1430 8.6651 Approximate 95% CI for : , 0.004573, 0.277108 .64 ( 5.0239 ( 17.9992 ) ( 0 ( 2.3381 ) 1.00 0.009132 1.00 0.009132 .0010 2 .975;1.00 = 2 .025;1.00 = 2 O 0.0010 5.0239 Approximate 95% CI for : , 0.001816,9.124630 ) ) 8.31 0.308218 8.31 0.308218 2 .975;8.31 = 2 .025;8.31 = 2 P 2.3381 17.9992 Approximate 95% CI for : , 0.142296,1.095427 Approximate CIs for Standard Deviations: : 0.067624, 0.526410 : 0.0426146,3.020700 : 0.37722,1.046627 PxO O P

More Related Content