Hubbard Model Analysis and Its Extensions in Solid-State Physics

phy 752 solid state physics 11 11 50 am mwf olin n.w
1 / 33
Embed
Share

Explore the intricacies of the Hubbard model through an analysis of solutions for a 2-site system and its Hartree-Fock extension to a linear chain. Delve into the Hubbard Hamiltonian, possible configurations on a single site, and the implications of electron hopping and repulsion. Discover the matrix elements of the Hamiltonian for all 2-particle states with spin 0 and the corresponding eigenvalues. Uncover the eigenvalues of the Hubbard model and gain insights into the complexities of solid-state physics.

  • Solid-State Physics
  • Hubbard Model
  • Hamiltonian
  • Hartree-Fock
  • Electron Hopping

Uploaded on | 0 Views


Download Presentation

Please find below an Image/Link to download the presentation.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.

You are allowed to download the files provided on this website for personal or commercial use, subject to the condition that they are used lawfully. All files are the property of their respective owners.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.

E N D

Presentation Transcript


  1. PHY 752 Solid State Physics 11-11:50 AM MWF Olin 107 Plan for Lecture 33: The Hubbard model Analysis of solution for a 2 site system Hartree-Fock approximation Extension to linear chain 4/17/2015 PHY 752 Spring 2015 -- Lecture 33 1

  2. 4/17/2015 PHY 752 Spring 2015 -- Lecture 33 2

  3. The Hubbard Hamiltonian: two particle contribution single particle contribution = { , } 0 = c c ' ' l l c { , } 0 c ' ' l l = { , } c c ' ' l l ll 4/17/2015 PHY 752 Spring 2015 -- Lecture 33 3

  4. l = 1 2 3 4 Possible configurations on a single site 0 0 c 0 c c 4/17/2015 PHY 752 Spring 2015 -- Lecture 33 4

  5. Hubbard model -- continued t represents electron hopping between sites, preserving spin U represents electron repulsion on a single site 4/17/2015 PHY 752 Spring 2015 -- Lecture 33 5

  6. Two-site Hubbard model ( 1 2 H t c c = ) ( ) + + + + + c c c c c c U n n n n 2 1 1 2 2 1 1 1 2 2 where n c c l l l Consider all possible 2 particle states with zero spin: 0 A c c 1 1 0 B c c 2 2 1 ( ) 0 C c c c c 1 2 1 2 2 4/17/2015 PHY 752 Spring 2015 -- Lecture 33 6

  7. Two-site Hubbard model ( 1 H t c = ) ( ) + + + + + c c c c c c c U n n n n 2 2 1 1 2 2 1 1 1 2 2 Matrix elements of Hamiltonian for all 2 particle states with spin 0: = 0 2 U t 0 2 H U t 2 2 0 t t Eigenvectors of the Hamiltonia n: Eigenvalues of Hamiltonian: + = + 2 1 1 2 U U 2 ( ) U U = + + + 1 C A B = 2 1 E t 1 4 4 t t 2 1 4 4 t t 1 ( ) E U = A B 2 2 2 2 U U = + + 2 1 E t 2 1 1 2 U U ( ) 3 4 4 t t = + + + 1 C A B 3 4 4 t t 2 4/17/2015 PHY 752 Spring 2015 -- Lecture 33 7

  8. Eigenvalues of the Hubbard model Eigenvalues of Hamiltonian: + = + 2 U U = 2 1 E t 1 4 4 t t E3 E U 2 2 U U = + + 2 1 E t 3 4 4 t t E2 E1 4/17/2015 PHY 752 Spring 2015 -- Lecture 33 8

  9. Two-site Hubbard model ( 1 2 H t c c = ) ( ) + + + + + c c c c c c U n n n n 2 1 1 2 2 1 1 1 2 2 Ground state of the two-site Hubbard model 2 2 1 1 2 U U U U ( ) = + + + = + 1 C A B 2 1 E t 1 1 4 4 4 4 t t t t 2 Single particle limit (U 0) 2 E t = 1 1 2 ( ) = + + C A B 1 1 2 1 ( ) 0 0 0 A c c B c c C c c c c 1 1 2 2 1 2 1 2 2 1 2 ( )( ) = + + 0 c c c c 1 1 2 1 2 4/17/2015 PHY 752 Spring 2015 -- Lecture 33 9

  10. Single particle limit (U0) Two-site Hubbard model Full spectrum for spin 0 eigenstates 2 E t = 1 2 ( )( ) = + + 0 c c c c 1 1 1 2 1 2 1 4 ( )( ) = = + 0 0 E c c c c 2 2 1 2 1 2 1 4 ( )( ) + + 0 c c c c 1 2 1 2 1 2 ( )( ) = + = 2 t 0 E c c c c 3 1 1 2 1 2 Single particle picture: +t E2 E1 E3 -t 4/17/2015 PHY 752 Spring 2015 -- Lecture 33 10

  11. Two-site Hubbard model -- Hartree-Fock approximation ( 1 2 2 1 H t c c c c c = + + ) ( ) + + + c c c U n n n n 1 2 2 1 1 1 2 2 Wave function assumed to be pr oduct of single particle states Zero order approximati on: 1 ( ) + Define: a c c 1 2 2 = HF Let 0 a a 1 1 2 = = + HF HF HF 2 E H t U 1 1 1 4/17/2015 PHY 752 Spring 2015 -- Lecture 33 11

  12. Two-site Hubbard model -- Hartree-Fock approximation ( 1 2 2 1 H t c c c c c = + + ) ( ) + + + c c c U n n n n 1 2 2 1 1 1 2 2 Variational search for lower energy solutions High spin solution = Spin 1 2 L et 0 c c H 1 = = S in p Spin Sp in 0 E 1 1 1 4/17/2015 PHY 752 Spring 2015 -- Lecture 33 12

  13. Ground state energy for 2-site Hubbard model Hartree Fock high spin exact 4/17/2015 PHY 752 Spring 2015 -- Lecture 33 13

  14. Two-site Hubbard model -- continued ( 1 2 2 H t c c c = + ) ( ) + + + + c c c c c U n n n n 1 1 2 2 1 1 1 2 2 Ground state of the two-site Hubbard model 2 2 1 1 2 U U U U ( ) = + + + = + 1 C A B 2 1 E t 1 1 4 4 4 4 t t t t 2 Isolated particle limit (t 0) 2 4 U t E 1 1 2 t ( ) ( ) + + + 0 0 c c c c c c c c 1 1 2 2 1 1 1 2 2 U 4/17/2015 PHY 752 Spring 2015 -- Lecture 33 14

  15. One-dimensional Hubbard chain 4/17/2015 PHY 752 Spring 2015 -- Lecture 33 15

  16. Approximate solutions in terms of single particle states; broken symmetry Hartree-Fock type solutions 4/17/2015 PHY 752 Spring 2015 -- Lecture 33 16

  17. 4/17/2015 PHY 752 Spring 2015 -- Lecture 33 17

  18. In the following slides, u represents U/t: 4/17/2015 PHY 752 Spring 2015 -- Lecture 33 18

  19. k = -2 cos(ka) k k a kF a -kF 4/17/2015 PHY 752 Spring 2015 -- Lecture 33 19

  20. 4/17/2015 PHY 752 Spring 2015 -- Lecture 33 20

  21. 1.5 SHF=FHF (m=0) 1.0 0.5 0.0 E -0.5 -1.0 -1.5 0 2 4 6 8 10 u 4/17/2015 PHY 752 Spring 2015 -- Lecture 33 21

  22. 1.5 SHF=FHF (m=0) 1.0 FHF (m=1/2) 0.5 FHF (m=1) 0.0 E -0.5 -1.0 -1.5 0 2 4 6 8 10 u 4/17/2015 PHY 752 Spring 2015 -- Lecture 33 22

  23. 4/17/2015 PHY 752 Spring 2015 -- Lecture 33 23

  24. Antiferromagnetic form: a (x cos k) For spin (x sin k) (x cos k) For spin (x sin k) 4/17/2015 PHY 752 Spring 2015 -- Lecture 33 24

  25. 4/17/2015 PHY 752 Spring 2015 -- Lecture 33 25

  26. Solutions to AHF equation for spin magnetization m as a function of u m u 4/17/2015 PHY 752 Spring 2015 -- Lecture 33 26

  27. 4/17/2015 PHY 752 Spring 2015 -- Lecture 33 27

  28. SDW form: a For spin (x cos k) For spin (x sin k) 4/17/2015 PHY 752 Spring 2015 -- Lecture 33 28

  29. 4/17/2015 PHY 752 Spring 2015 -- Lecture 33 29

  30. 1.5 SHF=FHF (m=0) 1.0 0.5 0.0 E -0.5 -1.0 -1.5 0 2 4 6 8 10 u 4/17/2015 PHY 752 Spring 2015 -- Lecture 33 30

  31. 1.5 SHF=FHF (m=0) 1.0 FHF (m=1/2) 0.5 FHF (m=1) 0.0 E -0.5 -1.0 -1.5 0 2 4 6 8 10 u 4/17/2015 PHY 752 Spring 2015 -- Lecture 33 31

  32. 1.5 SHF=FHF (m=0) 1.0 FHF (m=1/2) 0.5 FHF (m=1) 0.0 AHF E Exact -0.5 -1.0 -1.5 0 2 4 6 8 10 4/17/2015 PHY 752 Spring 2015 -- Lecture 33 32 u

  33. Single partical spectra 4/17/2015 PHY 752 Spring 2015 -- Lecture 33 33

Related


More Related Content