Lagrangian Mechanics and Hamilton's Principle in Classical Mechanics

phy 711 classical mechanics and mathematical n.w
1 / 32
Embed
Share

Explore Lagrangian mechanics with a focus on Hamilton's principle, Lagrange's equations, trajectory optimization, and the effects of constraints in classical mechanics. Understand the generalized coordinates and the minimization of the action through Euler-Lagrange equations.

  • Lagrangian Mechanics
  • Hamiltons Principle
  • Classical Mechanics
  • Lagranges Equations
  • Trajectory Optimization

Uploaded on | 1 Views


Download Presentation

Please find below an Image/Link to download the presentation.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.

You are allowed to download the files provided on this website for personal or commercial use, subject to the condition that they are used lawfully. All files are the property of their respective owners.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.

E N D

Presentation Transcript


  1. PHY 711 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF in Olin 103 Notes on Lecture 5 Chap. 3&6(33) in F&W Lagrangian mechanics 1. Lagrange s equations in the presence of velocity dependent potentials such as obtained when a charged particle moves in a magnetic field. 2. Effects of constraints 9/4/2024 PHY 711 Fall 2024 -- Lecture 5 1

  2. 4 PM Olin 101 9/4/2024 PHY 711 Fall 2024 -- Lecture 5 2

  3. 9/4/2024 PHY 711 Fall 2024 -- Lecture 5 3

  4. 9/4/2024 PHY 711 Fall 2024 -- Lecture 5 4

  5. Comment on single and multiple coordinates -- Hamilton's principle for optimization for a single trajectory ( ): q t t f = = ( , , ) L q q t dt where ( , , ) Kinetic energy-Potential energy S L q q t t i Hamilton's principle for optimization for a multiple trajector ies { ( )}: q t t f = = ({ },{ }, ) where ({ },{ }, ) Kinetic energy-Potential energy S L q q t dt L q q t t i This "works" provided that the variation of each trajectory ( ) can be analyzed. q t Note that the trajectory components can be independent (as in the case of cartesian coordinates and/or multiple particles or can be dependent in which case we can use the trick of Lagrange multipliers. 9/4/2024 PHY 711 Fall 2024 -- Lecture 5 5

  6. Previously derived form for the Lagrangian -- Generalize coordinate d : s s d ( ) q ix U q d dt q T T q ( ) = = F a s 0 -m d q q ( ) ( ) T U T U d dt = = 0 q q q d dt q ) = L L q = = 0 q Note q only true is This : if ( , q ; L q t T U U = 0 9/4/2024 PHY 711 Fall 2024 -- Lecture 5 6

  7. Generalize coordinate d : s s d ( ) q ix Lagrangian - - Define : L , T U ( dt ) = , L L q q t d L L ( ) = = F a s 0 -m d q q q t f ( q , ) i t = Minimizati integral on : , S L q t dt Hamilton s principle from the backwards application of the Euler-Lagrange equations to Define -- Lagrangian: = L T U ( ) , q , L L q t 9/4/2024 PHY 711 Fall 2024 -- Lecture 5 7

  8. Summary Hamilton s principle: ( ) , q = Given the Lagrangian function: , , L L q t T U The physical trajectories of the generalized coordinates ( ) q t ( ) , q = are those which minimize the action: , S L q t dt Euler-Lagrange equations: d dt L q L q d dt q L L q = = 0 for each : 0 q 9/4/2024 PHY 711 Fall 2024 -- Lecture 5 8

  9. Note: in proof of Hamiltons principle: d L L ( , q ) = = 0 for , L L q t T U dt q q It was d necessary U assume to that : contribute not does to the result. dt q How can we represent velocity - dependent forces? Why do we need velocity dependent forces? a. Friction is sometimes represented as a velocity dependent force. (difficult to treat with Lagrangian mechanics.) b. Lorentz force on a moving charged particle in the presence of a magnetic field. 9/4/2024 PHY 711 Fall 2024 -- Lecture 5 9

  10. Some details -- d dt q L L q ( ) , q = = 0 for , L L q t T U It was necessary to assume that: d U dt q does not contribute to the result. This comes from D'Alembert's analysis which gave us: U q d dt q T T q ( ) = = F a s 0 -m d q q ( ) d dt q T T U ( ) = = F a s 0 -m d q q ( ) ( ) d dt T U T U = while we want to use: 0 q q q 9/4/2024 PHY 711 Fall 2024 -- Lecture 5 10

  11. Lorentz forces: E r B r For particle of charge q electric an in field ( , magnetic and ) field ( , : ) t t ( q ) = + F E v B Lorentz force : q 1 c + ( ) ( ) = v B component : x F E 1 x x x c In this case, it is convenient to use cartesian coordinates , , , , , , L L x y z x y z t T U = ( ) Note: Here we are using cartesian coordinates for convenience. ( ) = + + 2 2 2 T m x y z 1 2 d dt x L L x d dt = -component: 0 x U x U x = + Apparently: F x q c ( ) r A( ) = r r Answer: , , U q t t ( ) A r , t 1 c ( ) ( ) ( ) ( ) = = E r r B r A r where , , , , t t t t t 9/4/2024 PHY 711 Fall 2024 -- Lecture 5 11

  12. More details -- ( ) ( ) d dt T U T U = Consider: 0 q q q 1 2 = + + 2 2 2 Suppose ( ) T m x y z ( ) ( ) d dt T U T U d dt d dt U x U x = + 0= mx x x d dt U x U x = = mx F x 9/4/2024 PHY 711 Fall 2024 -- Lecture 5 12

  13. Units for electromagnetic fields and forces cgs Gaussian units -- (as used your textbook) E B and fields as related to vector and scalar potentials: , 1 , , t t c t ( ) A r t ( ) ( ) ( ) ( ) = = E r r B r A r , , t t Corresponding Lagrangian potential: q U q t c SI units -- ( ) ( ) = r r A r , , t E B and fields as related to vector and scalar potentials: , , , t t t ( ) A r t ( ) ( ) ( ) ( ) = = E r r B r A r , , t t Corresponding Lagrangian potential: , U q t q = r r A r ( ) ( ) , t 9/4/2024 PHY 711 Fall 2024 -- Lecture 5 13

  14. Lorentz forces, continued: ( ) ( ) = + v B component of Lorentz force : x F q E 1 x x x c q ( ) ( ) = r r A r Suppose : , , U q t t c U ) + d U = + Consider : F x x dt x ( x ) ( x ) ( ( x ) r , A t r r r , , , A t U t q A t y = + + x z q x y z U x x ) t c q ( , r = A x x c ( ) ( x ) ( y ) ( ) ( ) r r r r r , , , , , dA t A t A t A t A t d U q q = = + + + x x x x x x y z dt x c dt c z t 9/4/2024 PHY 711 Fall 2024 -- Lecture 5 14

  15. Lorentz forces, continued: ( x ( z ) ( x ( y ) ( ) ( x ( ) r , A t r r r , , , A t U t q A t y = + + + x z q x y z U A x x c ( x ) ) ) ) r r r r , , , , t A t A t A t d q = + + + x x x x x y z dt x c t U d U = + F x x dt , x ( x ) ( y ) ( y ) ( ) ( ) ( x ) r , A t r r r r r , , , , A t A t A t t q q A t q y = + + x x x z q y z x c c c t ( x ) ( ) ( y ) ( ) ( ) ( x ) r , A t r r r r r , , , , , A t A t A t t q q q A t y = + + x x x z q y z x c t c c z ( ) q q ( ) ( ) ( ) ( ) ( ( ) )x = + = + r r r r v B r , , , , , qE t y B t z B t qE t t x z y x c c 9/4/2024 PHY 711 Fall 2024 -- Lecture 5 15

  16. Some details on last step: U x d dt r U x = + F x ( ) ( ) ( ) ( ) ( ) ( ) r r r r r , A t , , , , , t A t A t A t A t q c q c q c y x z x x = + + q y z x x y x y t ( ) ( ) ( ) ( ) ( ) ( ) r r r r r r , A t , , , , , t A t A t A t A t q c q c q c y x x z x = + + q y z x t x y x z ( ) A r , t 1 c E r ( ) ( ) ( ) ( ) = = r B r A r Note that: , , , , t t t t t So that: q c q c ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) = + = + r r r r r v B r , , , , , , F t qE t yB t zB t qE t t x x z y x x ( ) ( ) r r It follows that similar analyses can be applied to , and , . t F t F y z 9/4/2024 PHY 711 Fall 2024 -- Lecture 5 16

  17. Lorentz forces, continued: Summary of results (using cartesian coordinates) , , , , , , L L x y z x y z t T = ( ) U q c ( ) ( ) ( ) = + + = 2 2 2 r r A r , , T m x y z U q t t 1 2 ( ) A r , t 1 c ( ) ( ) ( ) ( ) = = E r r B r A r where , , , , t t t t t q c ( ) ( ) ( ) = + + + 2 2 2 r r A r , , L m x y z q t t 1 2 = + Note that, more generally, U U U mechanical EM q c ( ) ( ) = r r A r , , U q t t EM 9/4/2024 PHY 711 Fall 2024 -- Lecture 5 17

  18. Example Lorentz force L = ( ) q ( ) ( ) t , + + + 2 2 2 r r A r , m x y z q t 1 2 c B E B r B r z Suppose ( , ) y , 0 + x ( , ) t t 0 ( ) = A r x ) y ( , ) t 1 0 2 ( q ( ) = + + + + 2 2 2 L m x y z B y x x y 1 0 2 2 d c d L L q q = = 0 0 m x B y B y 0 0 2 2 q dt x x dt c c d L L d q = + + = 0 0 m y B x B x 0 0 2 2 dt y y dt c c d L L d = = 0 0 m z dt z z dt 9/4/2024 PHY 711 Fall 2024 -- Lecture 5 18

  19. Example Lorentz force -- continued ( ) q ( ) = + + + + 2 2 2 L m x y z B y x x y 1 0 2 2 c d q q q = = 0 0 m x B y B y m x B y 0 0 0 2 q 2 q dt c c c d q + + = + = 0 0 m y B x B x m y B x 0 0 0 2 2 dt c c c d = = 0 0 m z m z dt 9/4/2024 PHY 711 Fall 2024 -- Lecture 5 19

  20. Example Lorentz force -- continued ( 2 + = y x m L ) q ( ) + + + 2 2 2 z B y x x y 1 0 2 c q = + m x B y 0 c q = m y B x 0 c = 0 m z equations same that Note obtained are from direct applicatio q = n of Newton' laws s : r r 0z m B c 9/4/2024 PHY 711 Fall 2024 -- Lecture 5 20

  21. Example Lorentz force -- continued Evaluation q x m of equations : ( ) ( ) ( ) ( ) z t = 0 qB mc B y = + sin x t V t 0 0 c 0 ( ) q qB mc = + cos y t V t + = 0 m y B x 0 0 0 c = = V 0 m z 0 z ( ( ) ) ( ) ( ) ( ) z t qB mc = + Note: 3 second order differential equations need 6 constants for specific solution. cos mc qB x t x V t 0 0 0 0 qB mc = + + sin mc qB y t y V t 0 0 0 0 = + z V t 0 0 z 9/4/2024 PHY 711 Fall 2024 -- Lecture 5 21

  22. Some details Evaluation q x m of equations : qB mc qB mc qB mc qB mc d dt d dt dz dt = 0 B y = = 0 0 0 x y x y K 0 1 c q + = + = 0 0 0 y x y x K + = 0 m y B x 2 0 c = = 0 z K = 0 m z 3 How can you solve coupled differential equations? How can you determine the constants K1, K2, K3? 9/4/2024 PHY 711 Fall 2024 -- Lecture 5 22

  23. Example Lorentz force -- continued Consider formulation with different Gauge: ( ) = A r x 0 B y ( ) q = + + 2 2 2 L m x y z B y x 1 0 2 c d q q = = 0 0 m x B y m x B y 0 0 dt c c d q q ( ) + = + = 0 0 m y B x m y B x 0 0 dt c c d = = 0 0 m z m z dt Does it surprise you that the same equations of motion are obtained with a different Gauge? 9/4/2024 PHY 711 Fall 2024 -- Lecture 5 23

  24. How do these two different forms of A correspond to the same B? ( ) ( ) ( ) ( ) Note that , t A r = B r A r , , t t ( ) A r ( ) + A r A r r Consider ' , = , , t t f t ( ) = ' , t 1 ( ) + A r x y In our case, ( , )=2 '( , )= What is ( , )? f r t B y x 0 A r x t B y 0 t 9/4/2024 PHY 711 Fall 2024 -- Lecture 5 24

  25. Now consider formulation of motion with constraints -- Comments on generalized coordinates: ( , ) q ) = ( ( , ) t L L q t q t d L L = 0 dt q Here we have assumed that the generalized coordinates q are independent. Now consider the possibility that the coordinates are related through constraint equations of the form: ( ( ) 0 , ) ( : s Constraint = = j j t t q f f ) Lagrange multipliers = Lagrangian : ( , ) t ( , ) t L L q q t f d L L j j + = Modified Euler - Lagrange equations : 0 j dt q q q 9/4/2024 PHY 711 Fall 2024 -- Lecture 5 25

  26. Some details -- ( f , ) ( t 0 ) = Lagrangian : ( , ) t ( , ) = L L q q t t ( ) = Constraint : s f q t j j f d L L j j + = Modified Euler - Lagrange equations : 0 j dt q q q T hi S s a = moun 0 and fo ts t modifying our optimization problem - i f = + o - r e a h : = c 0 i ( ) 0, introducing the ne w const ant s . W S f i i i i 9/4/2024 PHY 711 Fall 2024 -- Lecture 5 26

  27. Simple example: = + 2 ( ( ), ( )) sin L u t u t m u mgu 1 2 u y ( ) = x + 2 2 ( , , , ) L x y x y m x y mgy 1 x 2 = + = sin ( , ) u sin = cos s 0 f x y x y y Note that: co 9/4/2024 PHY 711 Fall 2024 -- Lecture 5 27

  28. Case 1: ( ( ), ( )) L u t u t d L dt u Case 2: = + 2 sin 1 2 mu mgu L u = = = = 0 sin 0 sin mu mg u g ( ) = Which method would you use to solve the problem? Case 1 Case 2 = + 2 2 ( , , , ) L x y x y m x y mgy 1 2 = + + ( , ) f x y d dt x d dt y sin L x L y cos 0 x y L f x f y = + = = + 0 sin mx L + = = + + 0 cos my mg sin cos mg x 0 x = y Force of constraint; normal to incline cos ( ) = cos sin sin y g 9/4/2024 PHY 711 Fall 2024 -- Lecture 5 28

  29. Rational for Lagrange multipliers Recall Hamilton's principle: t f ( ) = ( ) , ( ) , S L q t q t t dt t i t ) t ( d dt q f L L q q t f = = ( ) , 0 S q dt t i = = With constraints: 0 f j j Variations are no longer independent. q f q j = = 0 at each f q t j Add 0 to Euler-Lagrange equations in the form: f q q j j j 9/4/2024 PHY 711 Fall 2024 -- Lecture 5 29

  30. Euler-Lagrange equations with constraints: ( f , ) ( t 0 ) = Lagrangian : ( , ) t ( , ) = L L q q t t ( ) = Constraint : s f q t j j f d L L j j + = Modified Euler - Lagrange equations : 0 j dt q q q Example: ( ) = + + 2 2 2 Lagrangian : cos L m r r mgr 1 2 r r = = Constraint : s 0 f mg 9/4/2024 PHY 711 Fall 2024 -- Lecture 5 30

  31. Example continued: ( ) = + + 2 2 2 Lagrangian : cos L m r r mgr 1 2 r = = Constraint : s 0 f dmr dt dmr dt r = + = 2 cos 0 mr mg + = 2 sin 0 mgr = = 0 r r g = sin = + 2 cos m mg 9/4/2024 PHY 711 Fall 2024 -- Lecture 5 31

  32. Another example: = + + + 2 1 2 2 Lagrangian : L m m m g m g 1 1 1 2 1 1 2 2 2 2 = + = Constraint : s 0 f d 1 2 + = 0 m m g 1 1 1 dt d + = 0 m m g 2 2 2 dt + = = + 0 1 2 1 2 2 m m = 1 2 g + m m 1 2 m m = = 1 2 g 1 2 + m m 1 2 9/4/2024 PHY 711 Fall 2024 -- Lecture 5 32

Related


More Related Content