Lecture on Rotational Motion in Classical Mechanics

phy 711 classical mechanics and mathematical n.w
1 / 22
Embed
Share

Explore the concepts of rotational motion including rigid body motion, moment of inertia tensor, torque-free motion, comparison of analysis in inertial vs. non-inertial frames, and properties of frame motion (rotation) in this lecture. Understand the physics of rigid body motion, effects on acceleration, and kinetic energy of rigid bodies. Dive into the moment of inertia tensor, its matrix notation, and more.

  • Classical Mechanics
  • Rotational Motion
  • Rigid Bodies
  • Moment of Inertia
  • Inertial Frames

Uploaded on | 0 Views


Download Presentation

Please find below an Image/Link to download the presentation.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.

You are allowed to download the files provided on this website for personal or commercial use, subject to the condition that they are used lawfully. All files are the property of their respective owners.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.

E N D

Presentation Transcript


  1. PHY 711 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF Olin 103 Plan for Lecture 25: Rotational motion (Chapter 5) 1. Rigid body motion 2. Moment of inertia tensor 3. Torque free motion 10/24/2018 PHY 711 Fall 2018 -- Lecture 23 1

  2. 10/24/2018 PHY 711 Fall 2018 -- Lecture 23 2

  3. 10/24/2018 PHY 711 Fall 2018 -- Lecture 23 3

  4. Comparison of analysis in inertial frame versus non- inertial frame 0 Denote by a fixed coordinate system Denote by a moving coordinate system i e e i 3 3 = = 0 0 V V For an arbitrary vector : V e Ve i i i i = = 1 1 i i 0 V dV dt dV dt de dt 3 3 3 d dt = = + 0 i e e i i i V i i = = = 1 1 1 i i i inertial V 3 dV dt d dt e Def ine: i i = 1 i body V V 3 de dt d dt d dt = + i V i = 1 i inertial body 10/24/2018 PHY 711 Fall 2018 -- Lecture 23 4

  5. The physics of rigid body motion; body fixed frame vs inertial frame; results from Chapter 2: 10/24/2018 PHY 711 Fall 2018 -- Lecture 23 5

  6. Properties of the frame motion (rotation): ze d = d e e ze d d y z = e e d d z y d = d e e d d dt e = e dt d y e d e y e d = e dt ( ) ( ( ) ) d e e e cos sin d d d y y y = ( ) e e e sin cos d d z z z 10/24/2018 PHY 711 Fall 2018 -- Lecture 23 6

  7. V dt V dt e 3 d d d = i = + i V i dt 1 inertial body V dt V dt d d = + V inertial body Effects on acceleration: V dt V dt d d d d d = + + V dt dt inertial body body 2 2 V 2 V 2 V dt d d d dt = + + + V V 2 dt dt body inertial body 10/24/2018 PHY 711 Fall 2018 -- Lecture 23 7

  8. Kinetic energy of rigid body : r r d d = + r r dt dt inertial body =0 for rigid body r d = r p dt inertial ( ) 2 1 1 p = = 2 p r T m v m p p p 2 2 ( )( ) 1 p = r r m p p p 2 )( ) ( ) 1 ( p 2 = r r r m p p p p 2 10/24/2018 PHY 711 Fall 2018 -- Lecture 23 8

  9. 1 2 )( ) ( ) m 2 ( = T r r r p p p p p 1 2 = I Moment I of inertia p 1 tensor r : ( ) 2 r (dyad notation) m p r p p p Matrix I notation : I I I xx xy xz r I I I yx yy yz I I I zx zy zz ( ) p 2 p I m r r ij p ij pi pj 10/24/2018 PHY 711 Fall 2018 -- Lecture 23 9

  10. z Example: c y a b Moment of inertia + ab tensor a : x ( ) 2 2 b c ab ac 1 1 1 3 4 4 ( ) = + bc a 2 2 I M c bc 1 1 1 4 3 4 ( ) + 2 2 ac b 1 1 1 4 4 3 10/24/2018 PHY 711 Fall 2018 -- Lecture 23 10

  11. Properties of moment of inertia tensor: Symmetric matrix real eigenvalues I1,I2,I3 orthogonal eigenvectors 3 , 2 , 1 = = i I i i i e e I Moment of inertia + ab tensor a : ( ) 2 2 b c ab ac 1 1 1 3 4 4 ( ) = + bc a 2 2 I M c bc 1 1 1 4 3 4 ( ) + 2 2 ac b 1 1 1 4 4 3 = = For : a b c 1 11 11 = = = 2 2 2 I Ma I Ma I Ma 1 2 3 6 12 12 10/24/2018 PHY 711 Fall 2018 -- Lecture 23 11

  12. Changing origin of rotation z z ( ( ) p 2 p I m r r r ij p ij pi pj ) p 2 p ' ' ' ' I m r r r ij p ij pi pj rp = + r r R ' r p c p p R y Define center the m p of mass m p : y x r r a p p p p = b CM r m M p p x ( ) ( ) = + + 2 CM r R ' 2 I I M R R R M CMi r R R CMj r ij ij ij i j ij j i 10/24/2018 PHY 711 Fall 2018 -- Lecture 23 12

  13. ( ) ( ) = + + 2 CM r R ' 2 I I M R R R M CMi r R R CMj r ij z ij ij i j ij j i z = R x y z Suppose that a 2 b 2 c 2 = r ( R R and CM ) = 2 rp ' I I M R R r p ij ij ij i j c R y y ( ) x a + ab a 2 2 b c ab ac 1 1 1 3 4 4 ( ) b = + bc a 2 2 I ' M c bc 1 1 1 4 3 4 ( ) + 2 2 ac b 1 1 1 4 4 3 ( ) x + ab a 2 2 b c ab ac 1 1 1 4 4 4 ( ) + bc a 2 2 M c bc 1 1 1 4 4 4 ( ) + 2 2 ac b 1 1 1 4 4 4 10/24/2018 PHY 711 Fall 2018 -- Lecture 23 13

  14. z Note: This is a special case; changing the center of rotation does not necessarily result in a diagonal I z rp r p c R y y x a b ( ) + 2 2 0 0 b c 1 x 12 ( ) = + 2 2 I ' 0 0 M a c 1 12 ( ) + 2 2 0 0 a b 1 12 10/24/2018 PHY 711 Fall 2018 -- Lecture 23 14

  15. Descriptions of rotation about a given origin For general coordinate system 1 ij = T I ij i j 2 diagonaliz that system coordinate fixed) (body For es moment I of inertia tensor : = = e e e 3 , 2 , 1 I i i i i ~ ~ ~ 3 e = + + e e 1 1 1 2 2 3 3 2 e ~ i = 2 T I 1 e i i 2 10/24/2018 PHY 711 Fall 2018 -- Lecture 23 15

  16. Descriptions of rotation about a given origin -- continued angular of change of rate Time L L dt dt body momentum d d = + L diagonaliz that system coordinate fixed) (body For es moment I I of inertia tensor = : + ~ ~ ~ = + e = e e e e I + I + 1 1 2 2 3 3 i i i ~ ~ ~ e e e L d I 1 1 1 2 2 2 3 3 3 L dt ( )3 e ) ~ ~ ~ ~ ~ = + + + e e e e I I I I I 1 ~ 1 ~ 1 2 2 2 3 ~ 3 ~ 3 2 3 3 2 1 ( ) ( + + e I I I I 3 1 1 3 2 1 2 2 1 10/24/2018 PHY 711 Fall 2018 -- Lecture 23 16

  17. Descriptions of rotation about a given origin -- continued Note L dt that the = dt torque equation L d d + = L body very is difficult = solve to directly in the body fixed frame. For L dt we 0 can solve the Euler equations : d ( ) ) ~ ~ ~ ~ ~ = + + + e e e e I I I I I 1 1 1 2 2 2 3 3 3 2 3 3 2 1 ( ) ( ~ ~ ~ ~ + + = e e 0 I I I I 3 1 1 3 2 1 2 2 1 3 10/24/2018 PHY 711 Fall 2018 -- Lecture 23 17

  18. Euler equations rotation for = I body in fixed frame : ( ( ( ) ) ) ~ ~ ~ + 0 I I 1 1 2 3 3 2 ~ ~ ~ + = 0 I I I 2 2 3 1 1 3 ~ ~ ~ + = 0 I I I 3 3 1 2 2 1 = Solution + symmetric for top - - : I I 2 1 ( ( ) ) ~ ~ ~ = 0 I I I 1 1 2 3 3 1 ~ ~ ~ + = 0 I I I 1 2 3 0 1 1 3 ~ ~ = = (constant) I I 3 3 3 ~ ~ = ~ I ~ 1 2 3 1 Define : ~ 3 = 1 I 1 2 10/24/2018 PHY 711 Fall 2018 -- Lecture 23 18

  19. Solution of Euler equations for a symmetric top -- continued I I I t A t A t = 1 ~ 2 i ~ ~ e t A I + + = = = 1 2 2 1 where 3 1 3 1 = = + + Solution: 1 T = ( ) ( ) ( ) cos( sin( (constant) ~ 2 ~ e ) ) t 1 t 2 3 3 + 1 i = 2 i 2 2 3 I I A I 1 3 2 e = + + L e I I I 1 1 1 2 2 2 3 3 sin 3 ( ( ) ( ) ) ~ + + e e cos t I 1 1 2 3 3 3 10/24/2018 PHY 711 Fall 2018 -- Lecture 23 19

  20. Euler equations rotation for = I body in fixed frame : ( ( ( ) ) ) ~ ~ ~ + 0 I I 1 1 2 3 3 2 ~ ~ ~ + = 0 I I I 2 2 3 1 1 3 ~ ~ Solution + ~ + = 0 I I I 3 3 1 2 1 asymmetric for 2 top - - : I I I 3 2 1 ( ( ( ) ) ) ~ ~ ~ = 0 I I I 1 1 2 3 3 2 ~ ~ ~ + = 0 I I I 2 2 3 1 1 3 ~ ~ ~ + = 0 I I I 3 3 1 2 2 1 I I ~ ~ 3 2 Suppose : 0 Define : 3 1 3 I 1 I I ~ 3 1 Define : 2 3 I 10/24/2018 PHY 711 Fall 2018 -- Lecture 23 20 2

  21. Euler equations rotation for = I body in fixed frame : ( ( ( ) ) ) ~ ~ ~ + 0 I I 1 1 2 3 3 2 ~ ~ ~ + = 0 I I I 2 2 3 1 1 3 ~ ~ ~ + = 0 I I I 3 3 1 2 2 1 Solution for asymmetric top -- Approximate solution -- : I I I 3 2 1 I I Suppose: 0 Define: 3 2 3 1 3 I I 1 I Define: 3 1 2 3 I 2 10/24/2018 PHY 711 Fall 2018 -- Lecture 23 21

  22. Euler equations for asymmetric top -- continued ( ( ( ) ) ) + = 0 I I I 1 1 2 3 3 2 + = 0 I I I 2 2 3 1 1 3 + = 0 I I I 3 3 1 2 2 1 I I I I If 0, Define: 3 2 3 1 3 1 3 2 3 I I 1 2 ~ ~ ~ ~ = = 1 1 2 2 2 1 If and A are both t positive or both negative : 1 2 ( ) ~ + ( ) cos t 1 1 2 ( ) ~ + ( ) sin 2 t A t 1 2 2 1 If and have opposite signs, solution unstable. is 1 2 10/24/2018 PHY 711 Fall 2018 -- Lecture 23 22

Related


More Related Content