
Lorentz Transformations and Velocity in Special Relativity
Explore the theory of special relativity with a focus on Lorentz transformations, energy, momentum, and electromagnetic field transformations. Understand the complexities of velocity transformations in moving frames and the concept of velocity 4-vector in the context of physics.
Download Presentation

Please find below an Image/Link to download the presentation.
The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.
You are allowed to download the files provided on this website for personal or commercial use, subject to the condition that they are used lawfully. All files are the property of their respective owners.
The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.
E N D
Presentation Transcript
PHY 712 Electrodynamics 10-10:50 AM MWF Olin 107 Plan for Lecture 23: Continue reading Chap. 11 Theory of Special Relativity A. Lorentz transformation relations B. Energy and momentum C. Electromagnetic field transformations 03/26/2014 PHY 712 Spring 2014 -- Lecture 26 1
3/25/2014 PHY 770 Spring 2014 -- Lecture 16 2
3/25/2014 PHY 770 Spring 2014 -- Lecture 16 3
03/26/2014 PHY 712 Spring 2014 -- Lecture 26 4
Convenient v notation : Lorentz transformations v c 1 v 2 1 v Stationary frame Moving ct + frame y y ( x ) = + ' ' ct x ( ' ) = x ' ' ct v = y y x = z ' z x y x y x 03/26/2014 PHY 712 Spring 2014 -- Lecture 26 5
Lorentz transformations -- continued = v : v x For the moving frame with 0 0 0 0 v v v v v v 0 0 0 0 1 - v v v v v v = = L L v v 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 ' ' ct ct ct ct ' ' x x x x 1 - = = L L v v ' ' y y y y ' ' z z z z Notice : = 2 2 2 2 2 2 2 2 2 2 ' ' ' ' c t x y z c t x y z 03/26/2014 PHY 712 Spring 2014 -- Lecture 26 6
Lorentz transformation of the velocity dx dy dz Define : u u u x y z dt dt dt ' ' ' dx dy dz + ' ' ' u u u x y z ' ' ' dt dt dt ' u v = x u x + 2 1 ' / vu c x ' u ' u y = = z u u ( 1 ) 1 ( 1 ) y z + + 2 2 ' / ' / vu c vu c v x v x 1 Where : ( ) v 2 2 1 / 1 v c v Note that the velocity components themselves do not obviously transform according to a Lorentz transformation. 03/26/2014 PHY 712 Spring 2014 -- Lecture 26 7
Velocity transformations continued: v u u / ' 1 + ' u + ' ' u y = = = Consider : . x z u u ( 1 ) ( 1 ) x y z + + 2 2 2 ' / ' / vu c vu + c vu c x v x ' v x 2 1 / 1 vu c = Note that x ( ) ( ) ( ) u 2 2 2 1 / 1 / ' 1 / u ' c u c v c ( ) = + c c u ' ' u v u ' v u x ( ) u ( ) = + = + ' ' u u v u c ' ' ' ' u x v u x u v u ' x v u = = u u u ' ' u y u y u z u z c c ' u u u u ' ' Velocity 4-vector: u x u x = L v ' u u ' u y u y ' u u ' u z u z 03/26/2014 PHY 712 Spring 2014 -- Lecture 26 8
c u u Significance of 4-velocity vector: u x u u y u u z Introduce the rest mass m of particle characterized by velocity u: 2 c E mc u u u p c mu c u x x = = u x mc u p c mu c u y y u y u p c mu c u z z u z Properties of energy-moment 4-vector: ' ' E E E E ' ' p c p c p c p c x x x x = = = 1 2 2 2 2 2 2 - L L Note : ' ' E p c E p c ' ' p c p c p c p c y y y y ' ' p c p c p c p c z z z z 03/26/2014 PHY 712 Spring 2014 -- Lecture 26 9
Properties of Energy-momentum 4-vector -- continued = c mu c p z u z 2 E mc u p c mu c x u x p c mu c y u y ( 1 ) 2 2 2 2 u ( ) 2 u mc u 2 y = = = 2 2 2 2 2 2 2 Note : 1 ' ' x z E p c mc E p c 2 c c c u = 2 p Notion of " rest energy" : For , 0 E mc = + 2 2 2 2 4 2 Define kinetic energy : E E mc p c m c mc K 2 p p = + 2 Non - relativist limit ic : If , 1 1 1 E mc K mc mc 2 p 2 m 03/26/2014 PHY 712 Spring 2014 -- Lecture 26 10
Summary of relativistic energy relationships = c mu c p z u z 2 E mc u p c mu c x u x p c mu c y u y = + = 2 2 2 4 2 E p c m c mc u 2 2 + = + = 2 2 2 4 2 2 Check : 1 p c m c mc mc u u u = 2 Example electron an for : c E 5 . 0 MeV m = for 200 GeV E = = 5 4 10 u 2 mc 1 1 12 = 1 1 1 3 10 u 2 2 2 u u 03/26/2014 PHY 712 Spring 2014 -- Lecture 26 11
Special theory of relativity and Maxwells equations + = J Continuity equation : 0 t t 1 c + = A Lorentz gauge condition : 0 2 t 2 1 c + = 2 Potential equations : 4 2 2 A 2 t 1 c 4 + = 2 A J 2 c A t 1 c = E Field relations : = B A 03/26/2014 PHY 712 Spring 2014 -- Lecture 26 12
More 4-vectors: ct x position and Time : x y z J x c Charge current and : J J y J z A x Vector and scalar potentials : A A y A z 03/26/2014 PHY 712 Spring 2014 -- Lecture 26 13
0 0 Lorentz transformations v v v 0 0 v v v = L v 0 0 1 0 0 0 0 1 v L = L Time and space : ' ' x x x v v L = L Charge current and : ' ' J J J v v L = L Vector and scalar potential : ' ' A A A v 03/26/2014 PHY 712 Spring 2014 -- Lecture 26 14
4-vector relationships 0 ct A 1 x ( ) : A ( ) = 0 A , upper index 4 - vector for 0,1,2,3 A A 2 y A 3 z A ( ) = 0 A Keeping track Derivative = of signs operators - - lower : index 4 - vector , A A = , , c t c t 03/26/2014 PHY 712 Spring 2014 -- Lecture 26 15
Special theory of relativity and Maxwells equations = 0 J + = J Continuity equation : 0 t t 1 c = 0 A + = A Lorentz gauge condition : 0 2 t 2 1 c = 2 Potential equations : 4 2 2 J c 4 = A A 2 t 1 c 4 = 2 A J 2 c A t 1 c = E Field relations : = B A 03/26/2014 PHY 712 Spring 2014 -- Lecture 26 16
Electric and Magnetic field relationships 1 t c A z A A ( ) = = 0 1 1 0 = E x E A A x x c t A c t A c t A ( ) y = = 0 2 2 0 E A A y y ( ) = = 0 3 3 0 E A A z z z = B A ( ) y = = 2 3 3 2 B A A x y z ( ) A A = = 3 1 1 3 x z B A A y z x A ( ) A y = = 1 2 2 1 x B A A z x y 03/26/2014 PHY 712 Spring 2014 -- Lecture 26 17
( ) B F A A Field strength tensor 0 E F E E E x y z 0 B B x z y 0 B E B y z x 0 E B z y x Transformation of field strength tensor 0 0 v v v 0 0 v v v = = L L L ' F F v v v 0 0 1 0 0 0 0 1 ( ( ) ) ( B ) + 0 ' ' ' ' ' E E B E B x v y v z v z v E y ( ) + B ' 0 + ' ' ' ' E B E x v z v y v y v z = F ( ( ) ) ( ) + ' ' ' ' 0 ' E B B E v y v z v z v y x ( ) ' ' ' ' ' 0 E B B E B v z v y v y v z x 03/26/2014 PHY 712 Spring 2014 -- Lecture 26 18
Lorentz transformation of electromagnetic fields: ' x x E E E E B + = = ( ( ) ) ' ' y v y v z = ' ' E E B z v z v y = ' B B x x ( ( ) ) = ' ' B B E y v y v z = + ' ' B B E z v z v y 03/26/2014 PHY 712 Spring 2014 -- Lecture 26 19