
Lorentz Transformations in Electrodynamics
Dive into Lecture 24 of PHY 712 on Electrodynamics, covering equations in cgs units, special theory of relativity, Lorentz transformation relations, and basics of special relativity. Explore the invariance of physical laws in different frames of reference and the constant speed of light. Discover the v notation for Lorentz transformations and examples of applicable 4-vectors, shedding light on the complexities of relativistic physics.
Download Presentation

Please find below an Image/Link to download the presentation.
The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.
You are allowed to download the files provided on this website for personal or commercial use, subject to the condition that they are used lawfully. All files are the property of their respective owners.
The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.
E N D
Presentation Transcript
PHY 712 Electrodynamics 9-9:50 AM MWF Olin 105 Plan for Lecture 24: Start reading Chap. 11 A. Equations in cgs (Gaussian) units B. Special theory of relativity C. Lorentz transformation relations 03/25/2019 PHY 712 Spring 2019 -- Lecture 24 1
03/25/2019 PHY 712 Spring 2019 -- Lecture 24 2
03/25/2019 PHY 712 Spring 2019 -- Lecture 24 3
03/25/2019 PHY 712 Spring 2019 -- Lecture 24 4
03/25/2019 PHY 712 Spring 2019 -- Lecture 24 5
More relationships MKS (SI) = D CGS (Gaussian = + D E ) E + = = E P E P 4 0 1 1 1 = = = = H B M B H B M B 4 0 A 1 c A = E = E t t = B A = B A m u / / 0 0 03/25/2019 PHY 712 Spring 2019 -- Lecture 24 6
Notions of special relativity The basic laws of physics are the same in all frames of reference (at rest or moving at constant velocity). The speed of light in vacuum c is the same in all frames of reference. y y v x x y x y x 03/25/2019 PHY 712 Spring 2019 -- Lecture 24 7
Convenient v notation : Lorentz transformations c 1 2 1 Stationary frame Moving ct + frame y y ( x ) = + ' ' ct x ( ' ) = x ' ' ct v = y y x = z ' z x y x y x 03/25/2019 PHY 712 Spring 2019 -- Lecture 24 8
1 v c Lorentz transformations -- continued 2 1 = v : v x For the moving frame with 0 0 0 0 0 0 0 0 = = 1 - L L 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 ' ' ct ct ct ct ' ' x x x x = = 1 - L L ' ' y y y y ' ' z z z z Notice : = 2 2 2 2 2 2 2 2 2 2 ' ' ' ' c t x y z c t x y z 03/25/2019 PHY 712 Spring 2019 -- Lecture 24 9
Examples of other 4-vectors applicable to the Lorentz transformation: = v : v x 1 For the moving frame with v c 2 1 0 0 0 0 0 0 0 0 = = 1 - L L 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 / / ' k / ' k / c c c c ' ' k k x x x x = = = 1 - L L k r k r Note In free space: : ' ' t ' ' t ' ' k k k k y y y y ' ' k k k k 2 2 z z z z ' = = 2 2 ' 0 k k ' ' E E E E c c ' ' p c p c p c p c x x x x = = = 1 2 2 2 2 2 2 - L L Note : ' ' E p c E p c ' ' p c p c p c p c y y y y ' ' p c p c p c p c z z z z 03/25/2019 PHY 712 Spring 2019 -- Lecture 24 10
The Doppler Effect = v : x v For the moving frame with 0 0 0 0 0 0 0 0 = = 1 - L L 0 0 1 0 0 0 1 0 c 0 0 0 1 0 0 0 1 / / ' k / ' k / c c c ' ' k k x x x x = = = r 1 - L L k r k Note : ' ' t ' ' t ' ' k k k k y y y y ' ' k k k k z z z z ( ) ( ) = = / ' k / k = ' / c = c k k k c x x x ' ' k k y y z z 03/25/2019 PHY 712 Spring 2019 -- Lecture 24 11
The Doppler Effect -- continued ( ) ( ) = = / ' k / k = ' / c = c k k k c x x x ' ' k k y y z z More generally = : ( ) ( ) y k / ' / / cos c c c k y ( ) ( ) ' = = k k / ' cos ' cos / c k k c k = k k ' v = = For 0 : ( ) k /c 1 ( ) k = = ' 1 ' + 1 x = For 0 : ( ) k /c sin x = tan ' ( ) cos 03/25/2019 PHY 712 Spring 2019 -- Lecture 24 12
Electromagnetic Doppler Effect (=0) 1 ' 1 + source v detector v = c source v detector v v c = More precisely: (Thanks to E. Carlson) v 1 c source detector 2 Sound Doppler Effect ( =0) 1 / detector v c = ' s 1 / source v c s 03/25/2019 PHY 712 Spring 2019 -- Lecture 24 13
Lorentz transformation of the velocity Stationary frame Moving ct + frame ( x ) = + ' ' ct x ( ' ) = x ' ' ct = y y = z ' z For an infinitesimal increment: frame Stationary Moving frame ( ) = + ' ' cdt cdt dx ( ) = + dx dx' cdt' = dy dy' = dz dz' 03/25/2019 PHY 712 Spring 2019 -- Lecture 24 14
Lorentz transformation of the velocity -- continued frame Stationary Moving frame ( ) = + ' ' cdt cdt dx ( ) = + dx dx' cdt' = dy dy' = dz dx dz' dy dz Define : u u u x y z dt dt dt ' ' ' dx dy dz ( ( dt ' ' ' u u u x y z ' ' ' dt dt v / dt ) ) + ' + ' u dx dx' cdt' / ' = = = x u x + ' + 2 1 dt dx c vu c x ' u ' dy dy + ' y = = = u ( 1 ) ( ) y + 2 / ' ' / dt dt dx c vu c x 03/25/2019 PHY 712 Spring 2019 -- Lecture 24 15
Summary of velocity relationships + ' u v = x u x + 2 1 ' / x u vu vu c ' ' u vu + y y = u ( ) ( ) y + 2 2 1 ' / x 1 ' / x c c v ' ' u vu u vu = z z u ( ) ( ) z + + 2 2 1 ' / x 1 ' / x c c v 03/25/2019 PHY 712 Spring 2019 -- Lecture 24 16
Example of velocity variation with (u x/c=u y/c=0.5) ux/c uy/c 03/25/2019 PHY 712 Spring 2019 -- Lecture 24 17
Extention to tranformation of acceleration 3/2 2 v c v u 1 2 = a a ' 3 ' + 1 2 c 2 v c 1 2 v ( ) = + a a a u ' ' ' 3 2 c v u ' + 1 2 c 03/25/2019 PHY 712 Spring 2019 -- Lecture 24 18
Velocity transformations continued: ' Consider: 1 ' / x vu + ' u vu + + ' u v u vu y = = = . x z u u u ( ) ( ) x y z 2 + 2 2 c 1 ' / x 1 ' / x c c v v + 2 1 ' / x 1 vu c ( ) = = + 2 Note that 1 ' / x vu c ' u v u ( ) ( ) ( ) 2 2 2 1 / 1 '/ 1 / u c u c v c ( ) = = = = + ' c c v u u v + ' ' u v u u ' y x ( u ) ( ) = + v u c ' ' u u ' c u u ' ' ' ' u x v u x u v u u x u u ' ' u y u u z u z c ' u u u u u ' ' ' ' u x u x = L Velocity 4-vector: v ' u y u y PHY 712 Spring 2019 -- Lecture 24 u z u ' u z 03/25/2019 19
Some details: 2 2 2 2 ' u c v v c u c u c ( ) = + = + 2 1 ' / x 1 1 1 1 x vu c ' u v u 2 2 2 2 ' u vu + + ' ' u v u vu y = = = where . x z u u u ( ) ( ) x y z + 2 + 1 ' / x 2 2 vu c 1 ' / x 1 ' / x c c v v 2 2 2 y 2 y ' u c u c 2 x 2 z 2 z 2 ' ' u c u c v u u c v c u c v c + + + = + + + 1 1 x x 2 2 2 2 2 2 2 c 2 2 2 2 2 2 ' u c v u c v u c u c v c v c + = + + 1 1 1 1 x x 2 2 2 2 2 2 2 2 2 2 ' u c v u c u c v c + = 1 1 1 1 x 2 2 2 2 03/25/2019 PHY 712 Spring 2019 -- Lecture 24 20
c u u Significance of 4-velocity vector: u x u u y u u z Introduce the rest mass m of particle characterized by velocity u: 2 c E mc u u u p c mu c u x x = = u x mc u p c mu c u y y u y u p c mu c u z z u z Properties of energy-moment 4-vector: ' ' E E E E ' ' p c p c p c p c x x x x = = = 1 2 2 2 2 2 2 - L L Note : ' ' E p c E p c ' ' p c p c p c p c y y y y ' ' p c p c p c p c z z z z 03/25/2019 PHY 712 Spring 2019 -- Lecture 24 21
Properties of Energy-momentum 4-vector -- continued = c mu y u 2 E mc u p c mu c x u x p c y p c mu c z u z ( 1 ) 2 2 2 2 u ( ) 2 u mc u 2 0, y = = = 2 2 2 2 2 2 2 Note : 1 ' ' x z E p c mc E p c 2 c c c E u = 2 p Notion of "rest energy": For mc = + 2 2 2 2 4 2 Define kinetic energy: E E mc p c m c mc K 2 p p = + 2 Non-relativistic limit: If 1, 1 1 E mc K mc mc 2 p 2 m 03/25/2019 PHY 712 Spring 2019 -- Lecture 24 22
Summary of relativistic energy relationships = c mu c p z u z 2 E mc u p c mu c x u x p c mu c y u y = + = 2 2 2 4 2 E p c m c mc u 2 2 + = + = 2 2 2 4 2 2 Check : 1 p c m c mc mc u u u = 2 Example electron an for : c E 5 . 0 MeV m = for 200 GeV E = = 5 4 10 u 2 mc 1 1 12 = 1 1 1 3 10 u 2 2 2 u u 03/25/2019 PHY 712 Spring 2019 -- Lecture 24 23
Special theory of relativity and Maxwells equations + = J Continuity equation: 0 t + = 2 t 1 c = A Lorentz gauge condition: 0 t 2 1 c 2 Potential equations: 4 2 2 t A 1 c 4 = 2 A J 2 2 c A 1 c = E Field relations: t = B A 03/25/2019 PHY 712 Spring 2019 -- Lecture 24 24
More 4-vectors: ct x position and Time : x y z J x c Charge current and : J J y J z A x Vector and scalar potentials : A A y A z 03/25/2019 PHY 712 Spring 2019 -- Lecture 24 25
0 0 Lorentz transformations v v v 0 0 v v v = L v 0 0 1 0 0 0 0 1 v L = L Time and space : ' ' x x x v v L = L Charge current and : ' ' J J J v v L = L Vector and scalar potential : ' ' A A A v 03/25/2019 PHY 712 Spring 2019 -- Lecture 24 26