Matrix for High-Efficiency Long Training Field - July 2015 IEEE Document

july 2015 n.w
1 / 19
Embed
Share

Explore the detailed matrix for High-Efficiency Long Training Field (HE-LTF) as presented in the July 2015 IEEE document. The document includes contributions from multiple authors affiliated with prominent technology companies like Marvell, Broadcom, Intel, LG Electronics, Samsung, and more. Dive into the insights shared by experts in the field of wireless communication standards.

  • Matrix Analysis
  • IEEE Document
  • HE-LTF
  • Wireless Communication
  • Technology

Uploaded on | 0 Views


Download Presentation

Please find below an Image/Link to download the presentation.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.

You are allowed to download the files provided on this website for personal or commercial use, subject to the condition that they are used lawfully. All files are the property of their respective owners.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.

E N D

Presentation Transcript


  1. July, 2015 doc.: IEEE 802.11-15/0817r0 P Matrix for HE-LTF Date: 2015-07-12 Authors: Name Affiliation Address Phone Email Yakun Sun yakunsun@marvell.com Hongyuan Zhang hongyuan@marvell.com Lei Wang Leileiw@marvell.com Liwen Chu liwenchu@marvell.com Jinjing Jiang jinjing@marvell.com 5488 Marvell Lane, Santa Clara, CA, 95054 Yan Zhang yzhang@marvell.com Marvell 408-222-2500 Rui Cao ruicao@marvell.com Sudhir Srinivasa sudhirs@marvell.com Saga Tamhane sagar@marvell.com Mao Yu my@marvell..com Edward Au edwardau@marvell.com Hui-Ling Lou hlou@marvell.com Submission Slide 1 Yakun Sun, et. al. (Marvell)

  2. July, 2015 doc.: IEEE 802.11-15/0817r0 Authors (continued) Name Affiliation Address Phone Email Ron Porat rporat@broadcom.com Matthew Fischer Sriram Venkateswaran Tu Nguyen mfischer@broadcom.com Broadcom Vinko Erceg Robert Stacey robert.stacey@intel.com Eldad Perahia eldad.perahia@intel.com Shahrnaz Azizi shahrnaz.azizi@intel.com 2111 NE 25th Ave, Hillsboro OR 97124, USA Po-Kai Huang po-kai.huang@intel.com +1-503-724-893 Qinghua Li Intel quinghua.li@intel.com Xiaogang Chen xiaogang.c.chen@intel.com Chitto Ghosh chittabrata.ghosh@intel.com Rongzhen Yang rongzhen.yang@intel.com Laurent cariou laurent.cariou@intel.com Submission Slide 2 Yakun Sun, et. al. (Marvell)

  3. July, 2015 Authors (continued) doc.: IEEE 802.11-15/0817r0 Name Affiliation Address Phone Email Kiseon Ryu kiseon.ryu@lge.com Jinyoung Chun jiny.chun@lge.com Jinsoo Choi js.choi@lge.com Jeongki Kim jeongki.kim@lge.com Giwon Park giwon.park@lge.com 19, Yangjae-daero 11gil, Seocho-gu, Seoul 137- 130, Korea Dongguk Lim LG Electronics dongguk.lim@lge.com Suhwook Kim suhwook.kim@lge.com Eunsung Park esung.park@lge.com Hyeyoung Choi hy0117.choi@lge.com Jinmin Kim Jinmin1230.kim@lge.com HanGyu Cho hg.cho@lge.com Thomas Derham Orange thomas.derham@orange.com Brian Hart brianh@cisco.com 170 W Tasman Dr, San Jose, CA 95134 Cisco Systems Pooya Monajemi pmonajem@cisco.com Joonsuk Kim joonsuk@apple.com Aon Mujtaba mujtaba@apple.com Guoqing Li Apple guoqing_li@apple.com Eric Wong ericwong@apple.com Chris Hartman chartman@apple.com Submission Slide 3 Yakun Sun, et. al. (Marvell)

  4. July, 2015 doc.: IEEE 802.11-15/0817r0 Authors (continued) Name Affiliation Address Innovation Park, Cambridge CB4 0DS (U.K.) Maetan 3-dong; Yongtong-Gu Suwon; South Korea 1301, E. Lookout Dr, Richardson TX 75070 Innovation Park, Cambridge CB4 0DS (U.K.) 1301, E. Lookout Dr, Richardson TX 75070 Maetan 3-dong; Yongtong-Gu Suwon; South Korea Phone Email Fei Tong f.tong@samsung.com +44 1223 434633 Hyunjeong Kang hyunjeong.kang@samsung.com +82-31-279-9028 Kaushik Josiam k.josiam@samsung.com (972) 761 7437 Samsung Mark Rison m.rison@samsung.com +44 1223 434600 Rakesh Taori rakesh.taori@samsung.com (972) 761 7470 Sanghyun Chang s29.chang@samsung.com +82-10-8864-1751 Yasushi Takatori takatori.yasushi@lab.ntt.co.jp Yasuhiko Inoue inoue.yasuhiko@lab.ntt.co.jp 1-1 Hikari-no-oka, Yokosuka, Kanagawa 239-0847 Japan Yusuke Asai NTT asai.yusuke@lab.ntt.co.jp Koichi Ishihara ishihara.koichi@lab.ntt.co.jp Akira Kishida kishida.akira@lab.ntt.co.jp 3-6, Hikarinooka, Yokosuka- shi, Kanagawa, 239-8536, Japan Akira Yamada yamadaakira@nttdocomo.com watanabe@docomoinnovations. com hpapadopoulos@docomoinnova tions.com Fujio Watanabe NTT DOCOMO 3240 Hillview Ave, Palo Alto, CA 94304 Haralabos Papadopoulos Submission Slide 4 Yakun Sun, et. al. (Marvell)

  5. July, 2015 doc.: IEEE 802.11-15/0817r0 Authors (continued) Name Affiliation Address Phone Email pbarber@broadbandmobilete ch.com peterloc@iwirelesstech.com Phillip Barber The Lone Star State, TX Peter Loc F1-17, Huawei Base, Bantian, Shenzhen 5B-N8, No.2222 Xinjinqiao Road, Pudong, Shanghai F1-17, Huawei Base, Bantian, Shenzhen 5B-N8, No.2222 Xinjinqiao Road, Pudong, Shanghai 5B-N8, No.2222 Xinjinqiao Road, Pudong, Shanghai 10180 Telesis Court, Suite 365, San Diego, CA 92121 NA 303 Terry Fox, Suite 400 Kanata, Ottawa, Canada F1-17, Huawei Base, Bantian, Shenzhen 10180 Telesis Court, Suite 365, San Diego, CA 92121 NA F1-17, Huawei Base, Bantian, SHenzhen 303 Terry Fox, Suite 400 Kanata, Ottawa, Canada 5B-N8, No.2222 Xinjinqiao Road, Pudong, Shanghai Le Liu liule@huawei.com +86-18601656691 Jun Luo jun.l@huawei.com Yi Luo Roy.luoyi@huawei.com +86-18665891036 Yingpei Lin linyingpei@huawei.com Jiyong Pang pangjiyong@huawei.com Huawei Zhigang Rong zhigang.rong@huawei.com Rob Sun Rob.Sun@huawei.com David X. Yang david.yangxun@huawei.com Yunsong Yang yangyunsong@huawei.com Zhou Lan Lanzhou1@huawei.com +86-18565826350 Junghoon Suh Junghoon.Suh@huawei.com Jiayin Zhang zhangjiayin@huawei.com +86-18601656691 Submission Slide 5 Yakun Sun, et. al. (Marvell)

  6. July, 2015 Authors (continued) doc.: IEEE 802.11-15/0817r0 Name Affiliation Address Phone Email Straatweg 66-S Breukelen, 3621 BR Netherlands 5775 Morehouse Dr. San Diego, CA, USA 5775 Morehouse Dr. San Diego, CA, USA 1700 Technology Drive San Jose, CA 95110, USA 5775 Morehouse Dr. San Diego, CA, USA 5775 Morehouse Dr. San Diego, CA, USA 5775 Morehouse Dr. San Diego, CA, USA Straatweg 66-S Breukelen, 3621 BR Netherlands Straatweg 66-S Breukelen, 3621 BR Netherlands 1700 Technology Drive San Jose, CA 95110, USA 5775 Morehouse Dr. San Diego, CA, USA 5775 Morehouse Dr. San Diego, CA, USA 1700 Technology Drive San Jose, CA 95110, USA 1700 Technology Drive San Jose, CA 95110, USA 1700 Technology Drive San Jose, CA 95110, USA Albert Van Zelst allert@qti.qualcomm.com Alfred Asterjadhi aasterja@qti.qualcomm.com Bin Tian btian@qti.qualcomm.com Carlos Aldana caldana@qca.qualcomm.com George Cherian gcherian@qti.qualcomm.com Gwendolyn Barriac gbarriac@qti.qualcomm.com Hemanth Sampath hsampath@qti.qualcomm.com Menzo Wentink mwentink@qti.qualcomm.com Qualcomm Richard Van Nee rvannee@qti.qualcomm.com Rolf De Vegt rolfv@qca.qualcomm.com Sameer Vermani svverman@qti.qualcomm.com Simone Merlin smerlin@qti.qualcomm.com Tevfik Yucek tyucek@qca.qualcomm.com VK Jones vkjones@qca.qualcomm.com Youhan Kim youhank@qca.qualcomm.com Alice Chen Lin Yang Submission Slide 6 Yakun Sun, et. al. (Marvell)

  7. July, 2015 doc.: IEEE 802.11-15/0817r0 Authors (continued) Name Affiliation Address Phone Email No. 1 Dusing 1st Road, Hsinchu, Taiwan James Yee +886-3-567-0766 james.yee@mediatek.com Alan Jauh alan.jauh@mediatek.com chinghwa.yu@mediatek.co m frank.hsu@mediatek.com Mediatek Chingwa Hu Frank Hsu 2860 Junction Ave, San Jose, CA 95134, USA Thomas Pare +1-408-526-1899 thomas.pare@mediatek.com chaochun.wang@mediatek.c om james.wang@mediatek.com ChaoChun Wang James Wang Mediatek USA Jianhan Liu Jianhan.Liu@mediatek.com Tianyu Wu tianyu.wu@mediatek.com russell.huang@mediatek.co m Russell Huang Bo Sun Sub.bo1@zte.com.cn Kaiying Lv lv.kaiying@zte.com.cn #9 Wuxing duan, Xifeng Rd, Xi an, China Yonggang Fang ZTE yfang@ztetx.com Ke Yao Yao.ke5@zte.com.cn Weimin Xing Xing.weimin@zte.com.cn Submission Slide 7 Yakun Sun, et. al. (Marvell)

  8. July, 2015 doc.: IEEE 802.11-15/0817r0 Overview HE-LTF has been agreed such that [1]: The HE-LTF shall adopt a structure of using P matrix in the data tones as in 11ac. In the data tones, every space-time stream is spread over all HE- LTF symbols by one row of the P matrix as defined in 11ac. Different space-time streams use different rows in P matrix In an HE PPDU, the HE-LTF section shall start at the same point of time and end at the same point of time across all users Focus of these slides: How to align HE-LTF if different resource units have different number of spatial streams Submission Slide 8 Yakun Sun, et. al. (Marvell)

  9. July, 2015 doc.: IEEE 802.11-15/0817r0 Example of HE-LTF Suppose HELTF have NHELTF symbols, per the maximum number of Nsts across users. AP can also intentionally signal a longer HE-LTF to boost channel estimation performance. If a user chooses P matrix by its Nsts, it is a problem how to fill up to NHELTF symbols. HE-STF HE-LTF OFDMA-User-1 (Nsts_1) ? Full-20MHz HE Preamble HE-STF HE-LTF OFDMA-User-2 (Nsts_2) Legacy Preamble (RLSIG, HESIGA, HESIGB) HE-STF HE-LTF OFDMA-User-3 (Nsts_3) HE-STF HE-LTF OFDMA-User-4 (Nsts_4) N_HELTF symbols Submission Slide 9 Yakun Sun, et. al. (Marvell)

  10. July, 2015 doc.: IEEE 802.11-15/0817r0 Option 1: Repeating Each user selects an 11ac Nsts NVHTLTF P matrix and generates HE-LTF symbols in its scheduled tones. Then circularly repeat the generated HE-LTF symbols till all NHELTF HE- LTF symbols are filled. HE-LTF PNsts1 x N_VHTLTF1 HE-STF OFDMA-User-1 (Nsts_1) HE-STF HE-LTF OFDMA-User-2 (Nsts_2) Legacy Preamble 1x HE Preamble HE-STF HE-LTF OFDMA-User-3 (Nsts_3) HE-STF HE-LTF OFDMA-User-4 (Nsts_4) Slide 10 Submission Yakun Sun, et. al. (Marvell)

  11. July, 2015 doc.: IEEE 802.11-15/0817r0 Option 2: Uniform Spreading Each user(s) applies the first Nstsrows of a super P matrix. Super P matrix is determined in 11ac style by assuming size of NHELTF NHELTF. So P matrix is Nsts NHELTF. HE-LTF PNsts1 x N_HELTF HE-STF OFDMA-User-1 (Nsts_1) HE-STF HE-LTF OFDMA-User-2 (Nsts_2) Legacy Preamble 1x HE Preamble HE-STF HE-LTF OFDMA-User-3 (Nsts_3) HE-STF HE-LTF OFDMA-User-4 (Nsts_4) Submission Slide 11 Yakun Sun, et. al. (Marvell)

  12. July, 2015 doc.: IEEE 802.11-15/0817r0 Examples of Option 2 Suppose NHELTF = 6. All users chooses the super P matrix as 11ac P6x6. 1 1 1 1 1 1 1 w w w w w 1 1 w w w w w 1 1 P for Nsts=1 2 3 4 5 w w w w w w w w w w w w w w w P for Nsts=3 2 4 6 8 10 P for Nsts=5 = P 6 6 3 6 9 12 15 4 8 12 16 20 5 10 15 20 25 Reuse 11ac P matrices. No need to define new orthogonal matrices. Submission Yakun Sun, et. al. (Marvell) Slide 12

  13. July, 2015 doc.: IEEE 802.11-15/0817r0 HE-LTF P Matrix Option 1: P = Q P P r r r HELTF 1, 2, N , ,1: k k N k k k k N VHTLTF N k HELTF HELTF : an spatial mapping matrix VHTLTF N k sts Option 2: P = Q P r r r HELTF 1, 2, , k = k N k k k k HELTF P 1: ,1: k N N sts HELTF P :an orthogonal spatial mapping matrix N N HELTF HELTF Submission Slide 13 Yakun Sun, et. al. (Marvell)

  14. July, 2015 doc.: IEEE 802.11-15/0817r0 Comparison of Option 1 & 2 Option 1 and 2 are not equivalent only when N_VHTLTF cannot divide N_HELTF. Namely: N_HELTF = 6 and Nss = 3 or 4 (N_VHTLTF = 4) N_HELTF = 8 and Nss = 5 or 6 (N_VHTLTF = 6) A unified P matrix generation at transmitter for option 2. Apply a single P matrix for each RU (up to different numbers of rows) Noise suppression: Option 1 is not optimal in term of noise suppression, and the residual channel estimation error are colored across streams, due to the non- orthogonal P matrix. Option 2 always maximizes noise suppression (minimizes ChanEst MSE). Submission Slide 14 Yakun Sun, et. al. (Marvell)

  15. July, 2015 doc.: IEEE 802.11-15/0817r0 Simulations 4x4 with TxBF, BCC 20MHz, D_NLOS channel Actual channel estimation, no other impairment 4x HELTF symbols: Option 1: 6 HELTF symbols with a 4x4 P matrix and a circular repetition from 4 HELTF symbols Option 2: 6 HELTF symbols with a 4x6 P matrix Option 3: 4 HELTF symbols as a comparison This is to model another option of padding garbage for the last two HELTF symbols. This can also model a simple receiver ignoring the 2 circularly repeated HELTF symbols. Submission Slide 15 Yakun Sun, et. al. (Marvell)

  16. July, 2015 doc.: IEEE 802.11-15/0817r0 Simulations (2) HE-20MHz, 6x4-4ss, D-NLOS, MCS-3 HE-20MHz, 6x4-4ss, D-NLOS, MCS-7 0 0 10 10 4-LTF 6-LTF-Repeat 6-LTF-extended 4-LTF 6-LTF-Repeat 6-LTF-extended -1 -1 10 10 PER PER -2 -2 10 10 -3 -3 10 10 10 12 14 16 18 20 22 20 22 24 26 28 30 32 34 36 SNR (dB) SNR (dB) Option 3 (4 HELTF symbols) have more than 1dB loss. Option 2 has 0.5dB gain over option 1 for lower MCS and smaller gain in higher MCS. Submission Slide 16 Yakun Sun, et. al. (Marvell)

  17. July, 2015 doc.: IEEE 802.11-15/0817r0 Conclusions Two options of generating P matrix for OFDMA HE-LTF are discussed. Using a uniform super P matrix has the benefits of noise suppression and simpler signaling. Submission Slide 17 Yakun Sun, et. al. (Marvell)

  18. July, 2015 doc.: IEEE 802.11-15/0817r0 References [1] 11-15-0132-06-00ax-spec-framework Submission Slide 18 Yakun Sun, et. al. (Marvell)

  19. July, 2015 doc.: IEEE 802.11-15/0817r0 Straw Poll #1 Do you support that in an OFDMA PPDU, using N HE-LTF symbols, an RU with Nsts,total shall use the first Nsts,total rows of the N N P matrix? Submission Slide 19 Yakun Sun, et. al. (Marvell)

More Related Content