Max Flows, Min Cuts, and Ford-Fulkerson Algorithm Explained

Max Flows, Min Cuts, and Ford-Fulkerson Algorithm Explained
Slide Note
Embed
Share

Today's lecture covers important graph theory concepts like minimum s-t cuts, maximum s-t flows, and the Ford-Fulkerson Algorithm. Discover the significance of finding these values in a directed graph with edge capacities. Learn about s-s-t cuts, partitions of vertices, and the transition from undirected to directed graphs.

  • Graph theory
  • Ford-Fulkerson
  • Max flows
  • Min cuts
  • Directed graphs

Uploaded on Apr 03, 2025 | 0 Views


Download Presentation

Please find below an Image/Link to download the presentation.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.

You are allowed to download the files provided on this website for personal or commercial use, subject to the condition that they are used lawfully. All files are the property of their respective owners.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.

E N D

Presentation Transcript


  1. NACTP Annual Meeting Kansas City, MO Info for Upcoming Tax Year 2018 To be filed in 2019

  2. Faye Streeter, Program Consultant Kansas Department of Revenue 120 SE 10th St, 2nd flr, SW Topeka, KS 66601-3506 p: 785-296-2460 f: 785-296-2736 Email: faye.streeter@ks.gov Developer website: https://www.kdor.org/developers/subhome.html

  3. Whats New New K-40 page 1 New verbiage on 1st Exemption check field Old - Enter number of exemptions you claimed on your 2017 federal return. If no federal return is required, enter total exemptions for you, your spouse (if applicable), and each person you claim as a dependent. New - Enter the total exemptions for you, your spouse (if applicable) and each person you claim as a dependent. New verbiage on Line E Old - Number of exemptions claimed on your federal income tax return. New - Number of exemptions claimed. K-40 page 2 Added one new line Line 14 Credit for child and dependent care expenses Line 43 Local School District Contribution Fund School District Number raised up to same line Child and Dependent Care Credit Restored Child and Dependent Care Tax Credit is restored for individual income filers effective tax year 2018. The Kansas credit is the following percentage of the Federal Child and Dependent Care Credit under 26 U.S.C. 21 that is allowed against the taxpayer s federal income tax liability: Tax Year 2018 - 12.50% Tax Year 2019 - 18.75% Tax Year 2020 - 25.00% (and all tax years thereafter)

  4. Whats New, contd New Sch S Contd Part A Added one new line Line 15 Contributions to an ABLE savings accounts Part B Added new text indicating break in Section Income Additional Income (Lines B4 B12) Moved and lowered several lines from Line B3 B-10 Moved B3 Refunds to B4 B4 Alimony to B5 B5 Business to B6 B6 Farm to B10 B9 Pensions to B3 B10 Rental to B9 Part C Added one new line Line 1 Medical and dental expenses from line 4 of federal Sch A K-40V Starting 2018 the K-40V will contain a full scanline Form ID + Tax year + Primary 4 Character + Primary SSN + Spouse 4 Character + Spouse SSN K-40H Income limit changed to $35,000 K-40PT Income limit changed to $19,800

  5. Whats New, contd New Non-Scannable Forms The following forms will be given a Form ID required for processing 2018 forms: CRF DIS IA-22 IA-81 K-30 K-31 K-32 K-33 K-34 pg 1 K-34 pg 2 K-34 pg 3 K-35 K-36 K-37 K-38 K-39 K-40C K-41 pg 2 K-41 pg 3 K-41 pg 4 K-42 K-47 K-49 K-53 K-55 110518 130318 110818 110918 190018 190118 190918 190218 190301 190302 190303 190418 190518 190618 190718 190818 110418 142118 142218 142318 193518 191018 191118 191218 191318 K-56 K-57 K-59 pg 1 K-59 pg 2 K-60 K-62 pg 1 K-62 pg 2 K-64 K-68 K-70 K-72 K-73 K-75 K-76 K-77 K-79 K-81 K-82 K-83 K-85 K-86 K-87 K-88 K-89 K-120 pg 3 191418 191518 191601 191602 191718 191801 191802 191918 192018 192118 192218 192318 193618 192418 192518 192618 192718 192818 192918 193018 193118 193218 193318 193418 151218 K-120 pg 4 K-120AS pg 1 K-120AS pg 2 K-120EL K-121 pg 1 K-121 pg 2 K-120S pg 2 K-120S AS pg 1 K-120S AS pg 2 K-121S pg 1 K-121S pg 2 K-130 pg 3 K-130 pg 4 K-130AS pg 1 K-130AS pg 2 K-131 pg 1 K-131 pg 2 K-139 K-139F K-139F K-210 K-220 K-230 KS-2848 RF-9 151318 151418 151518 150918 150618 150718 154118 154218 154318 155418 155518 172218 172318 172418 172518 170618 170718 150818 151601 151602 180018 180118 180218 110718 110618

  6. Whats New, contd New TY 2018 Income Tax Calculations (and all tax years thereafter) a(1) Married individuals filing joint returns (F) For tax year 2018, and all tax years thereafter: If the taxable income is: The tax is: Not over $30,000 Over $30,000 but not over $60,000 Over $60,000 The tax is: 3.10% of Kansas taxable income $930 plus 5.25% of excess over $30,000 $2,505 plus 5.70% of excess over $60,000 a(2) All other individuals (F) For tax year 2018, and all tax years thereafter: If the taxable income is: The tax is: Not over $15,000 Over $15,000 but not over $30,000 Over $30,000 The tax is: 3.10% of Kansas taxable income $465 plus 5.25% of excess over $30,000 $1,252.50 plus 5.70% of excess over $60,000 Low Income Exclusion Married Filing Joint Taxable Income - $0 - $5,000 All other Individuals Taxable Income - $0 - $2,500 A Kansas Income Tax Return (K-40) must be filed to claim exclusion Non-Scannable Forms Most non-scannable forms will have a form ID placed on them. Same location as all other scannable forms.

  7. Whats New, contd New Income Tax Itemized Deductions Effective Tax Year 2018 Allowable Itemized Deductions Tax Year 2019 2018 2020 Qualified Charitable Contributions (as allowed in section 170 of the federal internal revenue code) Qualified Residence Interest (as provided in section 163(h) of the federal internal revenue code) Expenses for Medical Care (as allowable as deductions in section 213 of the federal internal revenue code) Taxes on Real and Personal Property 100% 100% 100% 50% 75% 100% 50% 75% 100% 50% 75% 100% Income Tax 529 and ABLE Account Subtraction Modification (New Sch S line) Effective Tax Year 2018 Allowable Itemized Deductions Contributions to Qualified ABLE Account and to another state s 529A Qualified Account $3,000 per beneficiary per year for Single, Married Filing Separate & Head of Household $6,000 per beneficiary per year for Married Filing Joint Proceeds from ABLE account may be transferred upon the death of a designated beneficiary to: 1) the estate of a designated beneficiary; 2) an account for another eligible individual specified by the designated beneficiary Except otherwise required by federal Social Security Act, the State, or by any agency, or Instrumentality thereof cannot seek payment From an ABLE account upon death. Learning Quest & Contributions to Another state s 529 Qualified Tuition Program $3,000 per beneficiary per year for Single, Married Filing Separate & Head of Household $6,000 per beneficiary per year for Married Filing Joint Effective tax year 2018, qualified educational expenditures includes up to $10,000 per beneficiary each year for K-12 tuition in addition to an institution of postsecondary education.

  8. Whats New and Obsolete New Notices Notice 18-01 Refund on Tax on Motor Fuel Used in Concrete Mixer Trucks Notice 18-02 Sales and Compensating Use Tax Exemption on Manufacturer Cash Rebates for the Purchaser or Lease of a Motor Vehicle Notice 18-03 Increase in Oil and Gas Conservation Fees Notice 18-04 2017 and 2018 Changes to Sales of Cereal Malt Beverage and Beer Any additional information on the 2018 Legislative Changes can be found at: https://www.ksrevenue.org/taxprac.html Obsolete Phone Numbers being Eliminated eff. 6/1/18 800-894-0138 800-894-0318 866-450-6490 877-317-5639 877-600-5640 Automated Refund Status line Automated Refund Status line Individual Income Tax Payment system Sales Tax TeleFile system Electronic Funds Transfer Payment system Sales Tax Telefile Effective June 1, 2018 to file by phone is no longer an options for sales / use tax ST-16TEL Sales Tax Telefile Worksheet ST-TEL Sales Tax Telefile Voucher

  9. Release Dates Week of August 13, 2018 Vouchers* K-40V K-41V K-120V K-130V K-40ES K-41ES K-120ES K-130ES Week of September 17, 2018 Returns* K-40 Sch S Sch CR K-40H K-40PT K-41 Week of October 15, 2018 Returns* K-120 K-120EX K-120S K-130 *With very few changes some of the returns/vouchers, could be released earlier then the dates indicated above.

  10. Any Questions?? Notes

  11. :image/jpeg;base64,/9j/4AAQSkZJRgABAQAAAQABAAD/2wCEAAkGBxMSEhUUEhQWFhUXFBQVFRUXGBcXFhcXFBUXGBQUFxcYHCghGBolHBQVITEhJSkrLi4uFx8zODMtNygtLisBCgoKDg0OGhAQGi8kHyQsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLCwsLP/AABEIAK4BIQMBIgACEQEDEQH/xAAbAAACAgMBAAAAAAAAAAAAAAADBAIFAAEGB//EAEUQAAEDAgQCBwUFBQYFBQAAAAEAAhEDIQQSMUFRYQUGEyJxgZEUMqGx8BVSYsHRFiNCkuEHY3KC0/EzQ6LC0heys+Lj/8QAGQEAAwEBAQAAAAAAAAAAAAAAAAECAwQF/8QAJREAAgMAAgIDAAEFAAAAAAAAAAECERIDIRNRBDFBFCIjQmGR/9oADAMBAAIRAxEAPwDkGXUwoMUwt7MzYCkAsCkEWBoBSyrYCklYUY1qxzQpBZCLCimxzG6DY6qrq0xxXR1MHJmfJJ1sBBkC3BWpEuJQytl6cq4M/CbpFzDKqyTO0RGVUIUjwW+zKYB80rPNBCPTbOiAMC2GrYaiNaixUSo1IVlhcZCrwyVMMIUsZ0OHrhwRHuCpsM5NGsTqVNFWbq1LqdMlIufdHZV0TFY/UKXdVWNqShOKBhqdRHDpSAcm6OkpMEElaJWLSRRuVGVhWkgNyokrFpFhRi0twsypWFEZWKeRYiworu0DdUanUBQalIHVTpUoEIsdBwVMIYCmAlYwgKlKiApZUrA2CtoQqiYlFAlMDaxSDFj7apWAriKM3SFTC3sNfrVWzqrQLmSl6rgTKpMTQiOjxuLqLuirakctVZtqWnVCbSLgSQU7FRUVMHTbMuMjkSEqQ3aQrztCy2X13HPZGayk8AkAfW6ehUUdJ5JAMFW9HCA2I21T7MEw7BEAaDE34JOQ8lTX6MIu0paC1XNeoRtbjP5Kpe7VNMTRpr1nac0F7lAjxVE0HdqpNdzS48VCqTCAosW1wszgqn7QrYrFAFwCEVtYhUrcQU5hsTGqTKRcMdIW8qFSxAhO4d7HbgLNstAMqm2gSrCnQbxHwR6dMTChyGola3ClT9kVt2QW8gS2Vkqm4NEGEViGhSgJaDJW+x8lis5WJaHk49jZRRTWU8KRoT53RqVM7q7IogGLZsJRyyFPs0WOhBuIEgGxP1fgmHVBB5Kt6YwRac4Nt/FINxEBUlZIeo/vEprCVHbKrD0xhq+UgqmhWdLQuL+qhWa02lDPSDXMtrwVbi8QCABruoRTC4yjGjp8jHqgNchiqSEIuKpEj9J0KL8TsCUqx6i8+qdBYSoD96fmp4ZsnK63DxSvaFTDgdUxD9RrmWDz4EIVKtldO8oTasIdRx1SAucfUaac7kT6LnqlVOVMTLYO2nmq6o5VFCYQVFslK5kanUsqEiLiQoOcUUxBQJSsdEVsBSBUmNlJsVEqLAEcOCuOg+rdWubAxAM+Ok8FrproWrh3d5jgOJESJieVwdVn5I3VmmHVlcyCiB+yXJKmwGydiLvovUd6Pjqrym2DP1C11Y6vVKzBUayWaNNiCRrO9l0lPqvVOsDxK5eTmgnTZ0Q45NFFmWiump9VOLx5BGb1XHELF/JgarhZybWkp/C9HF/H0XT0errW6lW2GwrWCAsZ/K9FriS+zjvsF3NYu6yjl6LSx/kzHmHo8g9k5KTcHyVqIRGgLufIY4Kl+CkRxQ24Atk3NrC+3Iaq9bCS6ZD3MLaTASbSTEeEIXI7oHBUcT1g6SJaaYbluJnWBtB5rnw8q36T6BxDO85vd4zPqqxuHdyXZFqujlknYMVlIVgmT0YSNRPmkq2Deza3EaK7JGWYhENaVWCVMSgCwbXWdskWkonaIAb7aEGrXQM6wNlNCNmoURlUrTWrbmhVYBm10TPKSY1O4eAhgaqAwlnNKs9UN7AVOgorERrEw6mAhFOwSIPNkvmTBEoXs54pAYHIrHxdTpYFxExojYHo2pVdFNjnXEwCYlS2Ukz13+ynpNr6dUBoac0hzWAWkkMc+IzDMbHaCOXPdL4+visQ6nXpU87Q8Zf+GGktIaS/NLg3WJy25p/qXiPZaVWGS9rQ5zMwyOAgBx4ESQSDJ4GyqOk6dOpSfWhud9R37uRLWsADS0G4El3oOC89L+5J/wDDr/xRyFdsOgGRx4rpegsDVqtpgM/dlxAeIPebcwdnD7sibWVX0Rg89ZgOhe0HwJE7fkvaadekwBrGwBoBAA9FfyeZwpJE8HGpdsZp1HtaBJsBJOpMXJ5rRc47pZ3SY2CBU6UOwC8vMmd6aRaXWB/NUVXpV3JLu6TfxT8UmLUTpe3A1K37awbhci/GE7oZxXNWuBkuUTsPtJn3li4z2nmsT8BO0JNKI0pIVFNtQrsaMUx5rkVr0g1yMwKGi0LdOYWrWAp07N1c4kQeUb6Koq9SnASKrSfAjwvddRTICZbWHBC5pRVRDxRl2zi6HU+uTZ1MDiXH5QrE9Sq8QKtMg6+8P+0rp2OTlGtCmXyeT8HH4/GcFjf7O6hEsBcYkwWtE8IcRPkqv9g8UNWmInSfkV617Zy+KwYieCUfmcq+xv4vGzyJ/VOs0SWVAOORyAerlS8bfeGX4m3xXtbcTzCyrVa4Xg+KtfOn+oj+JH2ePs6iYstzZG6SBmEnw2KpsR0NVaSDTIIsV7e5oHuwOQhcX1ne01QWx7ozADe9zxOnotuH5MpypmXLwRirR5+ej3jUIuG6KqVLMa4+St67DNk/0fi3U51EiCOK6nN10c6ir7OXPR7xqD6KPs5C7hrMwqOludxBBMzF8wECL81X1Oh3nvAAjeNuSS5PY3D0c2yieKi9hC6Z3Qj2xLHGeR+tilXYUTGU22uqU0yXFo54gnZYKJXUNpwP+Hb/AA/0TFLEt0cxpHAgeo5pOY1E5mh0dNy4BPYLohrjdzWgXJJ+QGpV9hcHRef3ha0bW73nATT8DQb7uU3tufS6zlyfha4wnRWBw9JogCq46F4EDh3bx8VvpLCYhwJBY0Ee7TEAiZ89UxgKLiYgtH4APUq5GFA1dK5ZSzKzoUbVHHUsI+i7vmzhBi/y4Jz2BnZ1DBLi0ho3nURw2V7iWMGhlDAan5GxYo5ToTo+o2q1xbAa4EzbRdx7S1IZGqFUjZKb2+xxWEPuxbQguxYVY5QzJLiQPkHqlcID66B2ig54VqAnMIcQtZiUEuC2KqrJOgsLSh2yxGQ0hQPU21Es0IjWlJjQ1TrQjtxKSa1FYFDSLVjgxBRWVykwVMOKmkVbH24ohS9rPFISVsFLKHpj4xPNbGJ5pEFbzpZQrZYDFKQxKrRVW34kNaXOsACSeAFyU8BplkMQVV9J9HCsQQ7KRysVzOP69tH/AAKbqhBdmzSwNaNHWBkG9jBEaKp/9Qazvdp0WD8XaOM7AQ5t1ceOUe0RKSfTOuf0FFw+fL9EI9FP2E84/JchQ/tCxM95lE+Gdt+ZJP0F0PRvXF5Du2owW3lju7HGXGIiTMn4rRynH7JUIv6LSj0VVI1H15J/o3B1KbvzMwqiv1uhpy0XB4bmLXFpEX0LXTNtwIJAOtuexnWvFuqAdqKbI7zGCmDAk2JmoHEC0T4aqXKUuhqKR6Fi6dUvzgyeU6cLnTkkcVh6j47lQRa0XXI4/pPG1A1zcSaLAM0dwEyCRoRMCBcn11h0H10xb7Vc0CTmY1skS23fBFs0yZ0HnMW0rVDkrdM66h0Y+b5x+XjdWjOiR/E5x8Vx+J681i4ilRaO5btJ960HM1/u8o81zuO6x9IuIDKro97ugNIJMwYJJFvnpMJ3KX7QZUfw9Sd0SBo6PrmlhWotBJr0oNu89kTMRObWbLzDGYzG1QzO8Oyme/nI1/iDgWxpY6xN9TtxrBpIZlOYSKdSqwERpLnR+XCCUqf6wtfiPVg0C7QORbp8EKpVcvLR0jiKbYYKhqEakBzWg3hrouQNjAB47uYHrPiqTSag7QB0FtQNa4AkQQ5p8tDxg7UoibPQiSeHqh3Gl1xtLrs43NKm1rpAJqGRxJ7vMDREf1prl4DGsyxLi5wsD7sFjnZifWZsFRJ1tV53CA6sgYDGuqNnKQJI1DgYtIINx8UarSuqSRLbBuqEqBcp9ieCw0CFfRFsFnWsya9ktrfhH5qhrdYMO2p2Yc57w7KW02OdcGDewIHEFHQdlnBWw0qrrdZqDCBDy+YyAMzA8CM8+k/JGrdNRE0ngGwLixjSTFg5zr68J1spc4opQkPwVtJ/aH92/wBWf+SxLyR9hiRZDDhSGH5pPtysFYrmpnVcfQ72A4qQaBuke0cskop+wteh7tQNCoGulmtKmKRTpIXYQ1ZWB6iKRU20DzTtCpku1WdqpNwp4IjcIUtRDMgXaKm6zYl3Z5AYzyHae6I7t9JJjyXQeyngqDpmW1oiYpt7sC5JdaTfSDbhvsnNV0NQa+zmcJRpV88kBwEwTAy5QJEDSw+J3uq/ojDAEl8kz97bcCL67q+xWCDZO5N2wYJgx+LjodkuMlOezaQ6IJl0n/FBFkvJ6bHmynwtGjmYWOdmB7sEA7izTfSbgK87Ij3nvjUgucTMRc31sIsOU6jZTuIbBjUZmuM63b8OCNIBuJERfY2vJFtBcm2vBKU7GogMdj8rYFISRAh0EtEAZm5eIJN/zhHDl2YPGt9QbG4m1pvGpsDCdNESc0CZgAGwO+5PifRTAhpAiDpBN9tZ1+aW0ukPJHE4chhPZnO06Nc5rXXvm0mRM2PGeIqOPOjqRDYJIDne+JMDQRAN5Oo2RadNrfdbltBbqBeSRaCba7eqG2SYFxwGsA/0RoVDlFrnuMgNAgaybgGSeEEDfQydEtQxLgYDRoQSWuBngDHe8jfkgUqFSTme6AIDdAJiSY94yN+CIwZRczbcGfMWlJ1Y0YcTVmAGaXgwPTVp312Avud3SbgwDLpBd3ncdAAB/vugNqxcP1+6QDfiW/msq1GkXIjiSfQkp3/oKA4npV0ju7AjK6oH8csEX2HnzgN4jGQ0F4fraHb2tGTXW07ajVCzCIDhFrA6+QsfFaeA7UyfWLcCDzVaj6Jy/ZHompIgsABdoT7pdPj6ek6I+LrCLNAdPEvY2IFyGA76CDYpTCsLQ4MOUkxJaT84gX5jmnHsGp9bD1g/mlJq7Gk6LboHpjJTDKuUXOVzGuewySSCb3ufLWN+lDgB7onkvP3UxmBzQMsQ0tBF5mGm9p1hdJhMdnaCx0jSfC1+a6OP+own0Xbqx+6lOku0NN3YwKhHdzC3gDNjwJkctwqa54rO3PFaYM9nO0elq+c0nk7y0ZifxAgmx1FrDhZP4elSYJbQpDW4axv/AFEAgRPPVLdIdp25NPIHFrSS5pdO0QCJ91tzx8EJuMrNLhUJdIMZWwARAtaWgX8ybiAFyTVNo6o99h8R0k2i+zGtNj3ab2iB7oe5lQZt7AHWYuVqtiMzczWt093QtzCCcpLo1BvwCqsZiC/vOMHUiPHgOfAIVSoWwA0ASL5e93iAATwMidPjcSsGPe1Vvv8A/wAH+ksScj73/SP9NYr0yaO5axqIHNHBVfarfbKPG/Zp5EWfat5LYrN4BVnarBVS8YvIWwxAUhiAqoVVIVU/GHkLYVwpCuFUiot9ojxC8pb+0jipDE81TCopCojxIPKy1qY0NBcTYAk+AuVxvRuaXGXcSZMy6/1N7q06TrkU3RqYHxvtwBVZhGgAuJykyPDaYJEGxClwoe7JVsGc4cGkuHu3MX1JaNCZ1UHYZ03awf18IjfVSc0C9730BnlH0Vtp/wBjqN9zxj+miTVh9Auwi0t+tueyPTw2ulhuJHKx8Db6EOyvx5x6g2j0RpAEHOSSAMrTyBvoB3hrG6mirD0qRP8ADrxFydCZywD8bLHNBbMsjnZ3kC2fLkiBw07J1gIkHTjJaB6aJd1IfiG9g4721v6c9bJJIG2JY2g9wcGlpMQIBEGBAktjWOPAlT6L6Dc52aq6GXs0nM4ybkmQBpqDN9BBMQ/M9tIB0lwLoaWgNBkkOPumAYnQiwkhdC0gAAWAAAHADQLphEwlIpekMC6nlDXAhz8o7sEGC4A96NGm/LRHp4U7xp976gInTABpz917HDxnKdPwvcPNVpeSNBsQZJHmP0WfKkmacdtDfZjSW8PoNt6wpdkdMw46g24qLajDZzSBygg+Zi3OFHtGAEd7bYH1hoHoFiakTG75jjH6KZaLHbyjyjXZDpuaTuBzMD0hbp02gkzmJ4RLp8NU6FaMyBx03sLA+QO/ksNFm9vEj9Ssc4mB5GC0tAG1ljaDfva+vlJn56q8dE6IuwQdpB1mBw5engotD6c5co0k72/CAf6rdeswjvaSLODT7pgHn4+C0AzL3XEt2blaC3wJi3lHPdCQNhGYp4c0OggxJsIm0639N08HKmqCns7NfWWx8DBPoi4nHjs3wZIbxiZtY6T4FdPFydUzDl4+7QtiDnqudeJDQRlvlEaO5g68kwcOCBAcD97u/IZvlFtkXAYUANBEOgFxILspM2AbGkHjEX1TobEHNI4hp9dZjzXNN27N49Irj0cRIzT5NkTvMfnt4BLYmGmL6akiTO8jx5T6qyxmIdmDAYG57wk+Fw7yiPiqjH0TUdI2MEt3PMwJPgLTx0qCsmTZH+T1H6rFne+8/wDmH/isV5RFlsHredU/2vT4u/ld+iz7YZ+L+V36LoyZbLnOth6pR0wz8X8pUvtmn+L+VyMsNouw9SzqjHTVP8X8rv0Uvtqn+L+UpZYbRd51IPVH9tU/xfylbHTlP8X8qMsNl4KikHqh+3Kf4vT+qYodJB7SWTIMXG+uhN7JNUrY07dIJ0riTmaxpFiCZA97YAn3SOOt+SXbiXAWtwv8fHRRbTbbSbmbu8ZA1J5qWIdta87PLuYEArmb0zoSpADijOpJ0gOn1Egj6ujNruIiSDwDjPzkeKXbgotAE6SNI2sCAb8U3SadLOHmPIEBJpfg0wjKpte/M/qZS9fMbkm1/eHCNDeAeB28U1Si+n0Y4ITwCCC4cmkuDhawkNm8enoRfYCTq8Wgakw28nebTF59EB7Dq0ACdQN9L6fUeTj3t0in45KgOtv+XcocbACwizXfCBEfBXEhsa6sBv7x09+Q2ODYkR4mZ/wDgr01Fx9LHNoOzkEtuHZRe8R72Ua5Uz+1NH7tT+Vv5PXRFWjCTovsc6abxMd030i0gz4qmw+Ihouf5pPnLvil6nWSg4ZS2qQbEZRvbXNZaZVc0ZCAcv8AEXt2191wI8NfgsuaF0acM6DVsQZ7pcNj70X8DqoNrOLvecYmZLj6wfRaLi4aDled+GafrTdAqE7yfK1+QWaga7Ga+Ny2Ek+Lp9c1x8lCnj3GdvMuv4Sk23JMydeO/LT6sn6NJvAA+RN+EGUOKSBSbZjsY6+u2rj5W28FodIO33trA+tUQQP4b31yyPCTr+qhSEg6RMC4uedtByKSSHYEYp2sujXUk8iAf0U6ld5Ah7gdu8fS509dAjsYAeJHPTjvZYTIENIA0IMCfLZNiF6uMdYFz76gudaP83Pkp0sY+YBLgOJMC2kgki3L0FzMUADfXhMeevii06UugXFzYiQNxBdfX58pfQmNUa4DjMOkCCTFhJuSQdx8fBOOrCxAj/NM8h3tVzuJokDiRPOb7fBCpVNpiOAbcHUGwgcpUuFjUjoXUe9IDbfeLXGI1MuHxtok8RiRmE5JEX15fwl3O3PVI+0vDCDEbQ0ggDS8mTHJVzqhn6HD9NVUOMmUi7+1T9Bv+osVDJ4fL9Fi0wRoWyDif5nfm5ba0Dc+pP5oxwjvoLfsrvoLXTOWwNvvFbnmUQ4c8Vp1L8Qtc3FvHglphaIiOf6fBRgcT8UQ0fxD1CxuHJ0M+BCLYWDgc/isIbzRfZXcCVnsdTZjj4CfkjTCwBY3h810dCmGU2t3194TJ1EZxyF+HFVOEwRztzhzQO8ZEaeOt4VuMMXfxfXC4+HxWc3ZvxddmjV2AHnLh4knN9eK12s92GkDaOHLspm3xRfZZtLo3kx8nXWCmy8k+MQPWVnSN7NU38qc+H/5BbdWGkM9AT65flCw0GztEXN/kiU2sGgJ8p+f1ZKgs12kCSG+nHWJZb/dK16hI1aLkkhrTf8AzAx5QE5jAC3nsN766j6hV7aE7keIaL+eqqKE2Q7aJMsvYAtYBa2wttrZDzf4fKB9X+Wim/CknUfD4DZSp9HSPfHMDIT+uy0SMyuxlMkEANiNokQJMQfr4KuyBdL9knefIAf77qpxfRr2HTMNiCL+RdIKpMymhTCUgajLfxAwbCAZM3HDiuopOG7Zv9/TjZr49B6FVnRXRp9893UAEgGLSYm17evnbU8JA1btuL87OUzTZpxukSNUx7nq91uevy+KWqMBHuROwnfTRn6I5pHhHrH/ALlGng+I+vM+KhRo0cgdJmUaExtLhPDRoWFo3YfUH5t8PRMjBMnUcUVmEZwndOhWK02DQT9eSKyjAg/XwTgpco8/0WjS+pSoLAezt3spZBsfWdOOvijNpcvDkeS2KX1wSoLEnAazPC7o8osdeC0K2xYbyIJJBB3hpIHxTlTDtMTtzQHYIbu+vNOgsBWBdY+GW8ecCCfFKPojjcbfPZWjcMIFh5k/qhvw7howHwc4Hx1AnzQOyqqCLEjlr+lvBBJ2HwB9dk7iKdU6Uj5H/wC6Vb0dXP8Ayo5uDZ8oBWkTNi2YcT6hYn/smv8Ai9D+qxO0KmJjp9xkimDw/duvAlwPfPjbZQf1hdHdsTBAbTZlEC/vc9fyTHQXWp+FoPoCm14L6rw8uIc01qTKTstoHcaRzzJg9b2kx7JRy96QcsnNUY8AHJYNDXU26w1wBzRfWkYWIs6zVbCBO5LMoHxM+UIw611dNNw6PgBn05o566N09joZQ5zotN6wqCCGagDKD4WtCBjutna03024enTD6VRksytID3UnbMEwaOn43aIyh2wn7V1W2cYMDi12kzqtu601QQHF14Md4EtIkEXgTrN0av17NR01MLReRk964hlV1TKQW39+BpcSc0kJHpTrSK1J1N1BoJpU6IqZpfFMtyvcQ0Fz+6RqGkEd3uhGUGmGd1ne3XODJiTpGogm6jX6zdo0tdmLSO9faZFwZ+Ksa39oD3HO/DU3PDg9rs7rZavaNlpEEgNY2bHuTuUoOuTe6BhKYMtc52YZ3Q1rR3gwZTLA48STsYRlD0yGE6by27KDAdZsFwIs47xf3r/GUT9owTeGxqHMB+OcfL1UT1xPaVHjDUg2pSFBzJcA2j3g+mwtiM0s5DILFSZ1uZMnB0TBebENEPtlgMuI7pGhAEiQCp8cR+SRrEdYHSTlYG7ZgXTe0nMBsdOCiemszR+6Bcfdc0HIR/FAm5mNDv6l6J64vpUaVF1CnUZSDA2XEE5e1MGxBae2PdIOh+8VIdciQC/DUnEMa0uMS6KTacGWe53A/LPvBpm0ExENsXp4/wDuTxOWDDRMm7CPL4pz7SpN/hqeOWmDp48/klsX1wLqdVgw1JjqrS0vaYgGj2ZhoaADvztwlTrdfnPYA/DUi5rKjGPzOkZ6dJjXOEQ7L2LSN7NuMt340G2FqY+i7d3mxnzDgoiqyxhwtI/dtiJj7+kgieKJiOunaHN7JRBe4uc7N3jmqseQCGAtkUy2ZmHnwSeJ62do55NBoY+iKQY1xERifaA4nLcZjBaAJGhCWEh7Y5TxdPbOZOjWMBv/AJ1s9I0wdKo2Ogj4rbevcOa4YSlZzXC4Lg4U3U5zllycwcSRqPNZh+vJzA1MLScA8OaJAuKQYQSGSWl2ZxmZ7R3FPKFtmz0hTiYrRcagAkRImeY9Qtt6SZeGVrCbHQCJJg2HeF+Y4qr6S6yirQNF9ENAqZ2Gm7KWkYZlED3bsLmCoW/xHfdNVeuz3Ma19KWtw7cOWipDXtY0Br3AsMPBl2ZpbJiZEhxlBthT0pT4VfUH81n2lQ+5U0/D+q5en0g5s5RqR7xLr76qL+k6uktF9Y+HgjI9nU/adEaCqP5FI9KUuFQ+IB/Nck/HVTHejw+ZstNx1XZ3PbhHBGQ2deOlaezX+QA/NS+12RZr/Mf1XGe3VNc5+H0Fp9d8glxuOKWEHkOzPTtIahw8h/5KLusNH8Xo39VxLlmcp4Qts7dvWDD2nPfkPnKnV6w4duraw1iWATETF9pHqFw9EkFrheCDB0sV1uL691Kk9tRp1P3lVzT3Q6n2ggdmchALQbOINxJBRhB5GH/ajDRZtQ8oaP8AuU29ZaMgdjWuMwsHEjYgA3FjdVHSnWztqTqZw1JpcxrGlsQwNfmaGtyzDRZom2Z+swJ/tpV7enWFNgdTbWEFznAurUwxxh2jQGghg53kyjCDbLQdaMNlltJ5iJgAAToCc9p2U3dZ8OGhxpvDTMOLRlJGoDi6CQq9/XMZKjfZaf7xrgSXA3c2BmlkuElzzJkve90jNADT60ZabGOw7HuDKTM5d/y6RpjKwZZp5mU4MHV73CCSjCFtj1brhSERSdBBLXENAcJIkcRII8io/tpSynKypMaDKB5kfohnrgHOBdhKRawNytzaS+u58kM7weaveaRBy8TIrunOnxiKYY7D02QczHU4Bb33kizRILXNbH92w7QnhBtj37a/3bvUrFymYcPisSyg2z//2Q== Thank You!

More Related Content