
Operational Use of Satellite Measurements in Volcano Observatory
Explore the operational integration of satellite observations in volcano monitoring. Learn from experts Matthieu Epiard and Simon Carn how satellite data aids in volcano surveillance. Dive into the interactive presentation to discover more.
Download Presentation

Please find below an Image/Link to download the presentation.
The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.
You are allowed to download the files provided on this website for personal or commercial use, subject to the condition that they are used lawfully. All files are the property of their respective owners.
The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.
E N D
Presentation Transcript
This presentation is interactive and buttons are clickable. Click me to start Click me to start
Towards operational use of satellite SO measurements in a volcano observatory Matthieu Epiard (mepiard@mtu.edu), Simon Carn (scarn@mtu.edu) .________, :::::::::::::::::::::::::::::::::::::::: __Joooooo""""""ooooor""""""""7r""` '"""oooLJoo_, :::::::::::::: __,.Jo| |ooLJooo__Joo' ._or7ooor` Jo` ::::::'7or7r7oo"" "` ., """"7oooL, :::::: _ooooooooooo "oooooooooooooo """""""L_ |o, :::: _, _______ _|L__7oooo""r"LroLooor|o""`'"""\___, .L_, |oo` ::: L__ .oo" """"""""""""`""""""7o_Joo7ooLooo|"r\o""o""o__ JL, 7r" .____""` ::: o"Jor"'oooo, ._J7o_,__J| 'LJr` \ ."""` o o:: '"" J""` ,., _"` ""7"oJ"\7oo"o" "\_, o` " : """77 or""'"""" __ \_, J| '__"\ '"` : ._ ""'" o , `'""\_,._" "\_ :: "L' \_| ._o, : "7 _ _/"o7"\oo7L :: | '`._Joo` '"` : | _Jo`'` | _o" '\ J| "7, , ./" : "L _ ./""Jr""\/, :: "7 , L \J7| : . , "| _ | __.JoLJ| : | '___r.r |o7ooJ,_, : """ _ J___ '" ' " : """ J .__ :: 7 ____r`o`""""7, : S '""'| '\___ : _` 7, : / |L__, : .r """\_ :: '\ ", : \ ." : \ |` : | "" J : | .` : | ___" :: .` .r : J ." : / , J` : J "r" :: r .|r"" : .o or : J .o| :: | _" : 7 _Jo '"" :: ""` : :: ._ :: _Jor"" :: __J "_ :: ._ .,. .JoLJ_______, __ |oL_o| '\ ::: . __7_""""""""""""""""""""""""o '" ooL____""" ::: ._____/"` _""" ::: ::::: |o_/7oooo_, |o"` ._::::::""7, Jooo| ._o | ::::::::::::::" ::::::::::::::_Jor""7L/"""""""" r"""""""""_____ooo::::::::::::::::::::::::::::::::::::::::: | .____ .____,::::::::::::: "" ._/ooor""" .____/""""""" "7oo\_ . ::::ooooroo_ _____ |ooo, ._"7oor"7, ` """"""7L___:::"""""\_____, _ .__""" """""__.__._/7L_/J"""7L,.o| ::: _"` .ro| '7ooor"""" "" :: /"" |"7r :: __, |__o, /" oo""" _""":""L/`_/"or"`'" _Jo/\, ooo_oL_J " .J7,., :: |LJJr.JL_""` ' '`|oL 7oo"` J| | :: 7 _ .__ _"7ooo| ._ooo 'r""""._r""o JrJr_ .,|L_____Jo \,"L_ . _r"" 7 /" : || o o| Jor"\|o7r` r`7| _/or7,o" . "7ooo/"""""7""` "L_'""oo7 """` o"` 7_|.__J | : .r` ""\_, _\___._,|` '\ _/ '"` ` 7o, |"_ J` ` :: ." L7, 7_"7o______ ._\ |" \r| '"`'"L \,., ___, .____/`|o 7, L'L .r '`| ./" "L J`or _, J \'L _r"` \ _/` |/\ 7, "o_r"7, L J '|o_ | L, :: 'L '"""`| '|_L, o,'7L"` _"' L : '"_ __.___, ." ' \| __"rL "" ` '""| ._` '\ _| .__" J` , : |` /` ', o \, _r 7, L " _ ."`7 L 7, ' r ` ., "' "JL : .` | _7 ._,_""7r J7, : r _J` /" J` _r '` '"\_r |, : ", .r o .` ___/` "_, :: | | ', / | |" ""` '| | : '\ J" 7 r : | ____r` .| .___"""""L_, /` : '" ""` '""L / :: """""_"""""" __ .__ _r ., __/"" | _ ` r` : _" | . : : :: : :: 7 ` : : : : \, | | : JL,'" r : L, .rooo" .__, : "/_J LoL oJo/oL __ 'o,:: ' |'o or"" :_, __ ._ "` "` .r` 7_ : ' _. . r` '""o"r` : 7o| : ._/o " L_J :: |o : :: : :: :: _____ ._ __________, ._______J______ :: ._,._____, .___r___/""""" '"""""o, .__r""""` """""" '"` """\J____ :: ___""""""""""` '" ` """` 7_r` """"7o:: "\___, '""""""
Plume height UV remote sensing UV remote sensing Plume height Challenges Missions Overview Missions Plume detection Nasa API Plume detection satellite SO Nasa API Framework Framework Computing Data Data Unwrap everything
Beer-Lambert law 170 - 230 nm Plume height Assumption Plume height Assumption UV SO absorption 240 - 340 nm Temperature dependant UV remote sensing Concentration dependant UV radiance / irradiance UV radiance / irradiance Return to root tree Return to root tree
Irradiance Radiance = backscattering + reflected scattering Radiance / Irradiance absorption SO deduction Back to UV rem. Sens. Back to UV rem. Sens.
Atmosphere is heterogenous Multifactorial: O , pressure, temperature, thickness, etc. Assumption about plume height Concentration / Thickness Concentration / thickness Back to UV rem. Sens. Back to UV rem. Sens.
TOMS OMI Start: 10-24-1978 Nimbus-7 Start: 07-15-2004 Aura 15 y. of data Still in service Missions OMPS TROPOMI Start: 10-28-2011 Start: 10-13-2017 S5P SNPP Still in service Still in service Return to root tree Go to glossary Return to root tree Go to glossary
Python Multiprocessed Specs As software As framework Software Demo Demo Return to root tree Return to root tree
You can try it online at https://nasaframework. mastiny.fr This presentation is available too Return to root tree Return Software Return to root tree Return Software
Pacaya (Guatemala), March-April 2021 Date 03-27-2021 03-28-2021 03-29-2021 03-30-2021 03-31-2021 04-01-2021 04-02-2021 04-03-2021 SO2 amount (tons) SO2 uncertainty (tons) 56.82* 44.34* 8.64* 2.61* 242**** 1.93* 344**** 56.6** 2.59* 0.924 1 190**** 6.263 1 892**** 200.9** 28.83* 2.355 6084**** 1074****
Pacaya (Guatemala), March 31st, 2021 Wind field (m/sec) 0.0 10 SO amount (tons) 200 km 0.012 100 km 0 km 0.000
Etna (Sicily), September 29th, 2019 Wind field (m/sec) 0.0 10 SO amount (tons) 200 km 0.012 100 km 0.000 Return to root tree 0 km Return to root tree
Challenges Community built database Text mining on reports Plume Height Variability of plume height Ideas Assumption on plume height Manual input is tedious Only low clouds supported Return to root tree Return to root tree
Plume mixing challenges Deep learning / Neural network Simulations for creating fake training data Plume Detection Ideas Return to root tree Return to root tree
_____________________________________ | studied plume | | | | | | | | | | foreign | plume | | | | | | |____________________________________| Raster limits _____________________________________ | studied plume | | | | | foreign | | | | |____________________________________| Raster limits | | | | | | | | | | | plume | Return to root tree Return to plume detection Return to root tree Return to plume detection
Glossary OMI: Ozone Monitoring Instrument S5P: Sentinel-5 Precursor OMPS: Ozone Mapping and Profiler Suite TOMS : Total Ozone Monitoring Instrument SNPP: Suomi National Polar-orbiting Partnership TROPOMI: TROPOspheric Monitoring Instrument Return to root tree Return to missions Return to root tree Return to missions