Path Planning Algorithms: BFS, DFS, UCS, Greedy Search

penentuan penentuan rute route path planning n.w
1 / 19
Embed
Share

Explore the various route planning algorithms such as Breadth-First Search (BFS), Depth-First Search (DFS), Uniform Cost Search (UCS), and Greedy Best-First Search. Learn about these strategies in the context of artificial intelligence and algorithmic path planning in the field of computer science.

  • Path Planning
  • BFS
  • DFS
  • UCS
  • Greedy Search

Uploaded on | 0 Views


Download Presentation

Please find below an Image/Link to download the presentation.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.

You are allowed to download the files provided on this website for personal or commercial use, subject to the condition that they are used lawfully. All files are the property of their respective owners.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.

E N D

Presentation Transcript


  1. Penentuan Penentuan Rute ( (Route/Path Planning Route/Path Planning) ) Rute Bagian Bagian 1: BFS, DFS, UCS, Greedy Best First Search 1: BFS, DFS, UCS, Greedy Best First Search IF221 Strategi Algoritma Program Studi Informatika STEI-ITB

  2. Referensi 1. Materi kuliah IF3170 Inteligensi Buatan Teknik Informatika ITB, Course Website: http://kuliah.itb.ac.id STEI Teknik Informatika IF3170 2. Stuart J Russell & Peter Norvig, Artificial Intelligence: A Modern Approach, 3rd Edition, Prentice-Hall International, Inc, 2010, Textbook Site: http://aima.cs.berkeley.edu/ (2nd edition) 3. Free online course materials | MIT OpenCourseWare Website: Site: http://ocw.mit.edu/courses/electrical-engineering-and- computer-science/ 4. Lecture Notes in Informed Heuristic Search, ICS 271 Fall 2008, http://www.ics.uci.edu/~dechter/courses/ics-271/fall-08/lecture- notes/4.InformedHeuristicSearch.ppt 2 IF2211/NUM/29Mar2016

  3. Route Planning 3 IF2211/NUM/29Mar2016

  4. Source: Russells book Search O F 71 151 S 99 Z 211 75 A 80 140 R B P 97 120 101 118 D 75 M 146 138 T 70 L 111 C (a part of graph of Romania) S: set of cities i.s: A (Arad) g.s: B (Bucharest) Goal test: s = B ? Path cost: time ~ distance 5 IF2211/NUM/29Mar2016

  5. Blind Search Uninformed Search Uninformed Search BFS ( BFS (Breadth First Search Breadth First Search) ) DFS ( DFS (Depth First Search Depth First Search) ) DLS ( DLS (Deep Limited Search Deep Limited Search) ) IDS ( IDS (Iterative Deepening Search Iterative Deepening Search) ) UCS ( UCS (Uniform Cost Search Uniform Cost Search) ) 6 IF2211/NUM/29Mar2016

  6. A Pohon BFS Breadth-First Search (BFS) Treat agenda as a queue (FIFO) Z S T O O O F R F L 71 S 151 Z 99 211 75 B P C Goal M A 80 140 R B Simpul-E Simpul Hidup P 97 101 120 A ZA,SA,TA 118 ZA SA,TA,OAZ D 75 138 SA TA,OAZ,OAS,FAS,RAS M 146 T 70 L 111 TA OAZ,OAS,FAS,RAS,LAT C Queue OAZ OAS,FAS,RAS,LAT OAS FAS,RAS,LAT Path: A Path-cost = 450 S F B, FAS RAS,LAT,BASF RAS LAT,BASF,DASR,CASR,PASR LAT BASF,DASR,CASR,PASR,MATL 7 BASF Solusi ketemu IF2211/NUM/29Mar2016

  7. A Depth-First Search (DFS) Pohon DFS Treat agenda as a stack (LIFO) S Z T O F 71 S 151 Z 99 O 211 75 A S 80 140 R B P 97 120 F R 101 118 D 75 M 146 138 B Stack Goal T 70 L 111 C Simpul-E Simpul Hidup A ZA,SA,TA ZA OAZ, SA,TA Path: A Path-cost = 607 Z O S F B OAZ SAZO,SA,TA SAZO FAZOS, RAZOS,SA,TA FAZOS BAZOSF, RAZOS,SA,TA 8 IF2211/NUM/29Mar2016 BAZOSF Solusi ketemu

  8. Pohon IDS Iterative Deepening Search (IDS) Depth 0 A O F 71 S 151 Z 99 Z 1 S T 211 75 A 80 140 R O R 2 L F B P 97 120 101 118 B Goal D 3 75 M 146 138 T 70 L 111 C Depth=0: A: cutoff Depth=1: A ZA,SA,TA ZA: cutoff, SA: cutoff, TA: cutoff Depth=2: A ZA,SA,TA OAZ, SA,TA OAZ : cutoff FAS, RAS,TA FAS : cutoff RAS : cutoff LAT LAT : cutoff Depth=3: A ZA,SA,TA OAZ, SA,TA SAZO,SA,TA SAZO: cutoff FAS, RAS,TA BASF, RAS,TA BASF Stop: B=goal, path: A S F B, path-cost = 450 IF2211/NUM/29Mar2016 9

  9. Simpul-E Simpul Hidup Uniform Cost Search (UCS) A ZA-75, TA-118, SA-140 ZA-75 TA-118, SA-140,OAZ-146 TA-118 SA-140,OAZ-146,LAT-229 BFS & IDS find path with fewest steps (A-S-F-B) If steps cost, this is not relevant (to optimal solution) How can we find the shortest path (measured by sum of distances along path)? g(n) = path cost from root to n SA-140 OAZ-146,RAS-220, LAT-229,FAS-239,OAS-291 OAZ-146 RAS-220, LAT-229, FAS-239,OAS-291 RAS-220 LAT-229, FAS-239,OAS-291, PASR-317,DASR-340,CASR-366 LAT-229 FAS-239,OAS-291,MATL-299, PASR-317,DASR-340,CASR-366 FAS-239 OAS-291,MATL-299,PASR-317,DASR-340,CASR-366,BASF-450 O OAS-291 MATL-299,PASR-317,DASR-340,CASR-366,BASF-450 71 F S 151 Z 99 211 MATL-299 PASR-317,DASR-340,DATLM-364,CASR-366,BASF-450 75 A 80 140 R PASR-317 DASR-340,DATLM-364,CASR-366,BASRP-418, CASRP-455, BASF- B 97 P 120 450 101 DASR-340 DATLM-364,CASR-366,BASRP-418, CASRP-455, BASF-450 118 D 75 M 146 138 T 70 DATLM-364 CASR-366,BASRP-418, CASRP-455, BASF-450 111 L C Path: A Path-cost = 418 S R P optimal solution B CASR-366 BASRP-418, CASRP-455, BASF-450 10 IF2211/NUM/29Mar2016 BASRP-418 Solusi ketemu

  10. Heuristic Search Informed Search Informed Search Greedy Best First Search Greedy Best First Search A* A* 11 IF2211/NUM/29Mar2016

  11. Greedy Best-First Search Idea: use an evaluation function f(n) for each node f(n) = h(n) estimates of cost from n to goal e.g., hSLD(n) = straight-line distance from n to Bucharest Greedy best-first search expands the node that appears to be closest to goal Romania with step costs in km: 12 IF2211/NUM/29Mar2016

  12. Greedy best-first search example 13 IF2211/NUM/29Mar2016

  13. Greedy best-first search example 14 IF2211/NUM/29Mar2016

  14. Greedy best-first search example 15 IF2211/NUM/29Mar2016

  15. Greedy best-first search example Path: Arad Path-cost = 450 Sibiu Fagaras not optimal solution Bucharest, 16 IF2211/NUM/29Mar2016

  16. Problems with Greedy Best First Search 1. Not complete Lasi to Fragaras?

  17. Problems with Greedy Best First Search 2. Get stuck with local minima/plateu 3. Irrevocable (not able to be reversed/changed) 4. Can we incorporate heuristics in systematic search? 18 IF2211/NUM/29Mar2016

  18. (Bersambung pada Bagian 2)

Related


More Related Content