Practical Application of Interferential Therapy for Pain Relief
Interferential therapy (IFT) is a popular electrotherapy treatment used in physiotherapy to provide pain relief, reduce swelling, and promote healing. This therapy utilizes electric current at various frequencies to stimulate tissue positively, increasing blood flow and speeding up the healing process. Learn about the technique of application, methods of usage, and principles to effectively apply IFT in patient care.
Download Presentation

Please find below an Image/Link to download the presentation.
The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.
You are allowed to download the files provided on this website for personal or commercial use, subject to the condition that they are used lawfully. All files are the property of their respective owners.
The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.
E N D
Presentation Transcript
March 2024 doc.: IEEE 802.11-24/0439r0 UEQM evaluation and simulation results Date: 4-Mar-24 Authors: Name Sigurd Schelstraete Affiliations MaxLinear email sschelstraete@maxlinear.com Rainer Strobel rstrobel@maxlinear.com Submission Slide 1 Sigurd Schelstraete, MaxLinear
March 2024 doc.: IEEE 802.11-24/0439r0 Abstract [1] gives an overview over previous submissions and shows UEQM benefits on an artificial channel Questions addressed in this submission: When considering additional MCS, which combinations of (modulation order, code rate) are useful in practice For UEQM, provide more details on specific MCS that show improvements at various SNR Analysis of UEQM for NSS > 2 Analysis of UEQM with spatial stream optimization Not forcing 2 (or 4) spatial streams Submission Slide 2 Sigurd Schelstraete, MaxLinear
March 2024 doc.: IEEE 802.11-24/0439r0 Analysis of Modulation/code rate combinations MCS defined in 802.11 are a subset of all possible combinations of modulation and code rates Full set would be b:{BPSK, QPSK, , 4K QAM} K/N:{1/2, 2/3, , 5/6} Why allow all combinations? Link adaptation is simplified (less constraints in the search) Performance is improved (see next slides) Submission Slide 3 Sigurd Schelstraete, MaxLinear
March 2024 doc.: IEEE 802.11-24/0439r0 High-level description of Evaluation Method 1. Combine SNR per spatial stream/carrier from sounding to averaged SNR per spatial stream l SNRl Compare sounding SNR with required SNR table: SNRreq(K/N,b) (example on slide 31) and select set of candidate constellation sizes Find the best MCS in the set of candidate constellation sizes and transmit packet Appendix slide 20, 21 gives an overview of the algorithm for all possible code rate/constellation size settings Appendix slide 22 shows the algorithm for reduced code rate/constellation size settings (e.g., only existing combinations) Slides 23-25 give numerical examples for different choices of poissible modulation/code rate 2. 3. Submission Slide 4 Sigurd Schelstraete, MaxLinear
March 2024 doc.: IEEE 802.11-24/0439r0 Extension of constellation size/code rate options 3 cases tested 1. All possible modulation 2. Existing MCS + Additional Rate 2/3 MCS (green+yellow) 3. Existing MCS: green code rate combinations LDPC K/N 2/3 5/6 Constellation size b/bit 1 1 1 1 2 2 2 2 4 4 4 4 6 6 6 6 8 8 8 8 10 10 10 10 12 12 12 12 Slides 30-32 give a numerical example for different choices of possible modulation/code rate for these 3 options. Submission Slide 5 Sigurd Schelstraete, MaxLinear
March 2024 doc.: IEEE 802.11-24/0439r0 Rate-vs.-Range different Settings Additional settings help in the medium SNR region (15- 25dB) Selected MCS shown below MCS5 2 spatial streams D NLOS 2x2 All settings possible Existing + Rate 2/3 Existing only Submission Slide 6 Sigurd Schelstraete, MaxLinear
March 2024 doc.: IEEE 802.11-24/0439r0 Modulation/code rate combinations: Conclusions The following combinations are rarely used: Code Rate at higher constellations Code rates and 5/6 for lower modulations Focus should be on Code Rate 2/3 Limited constellation sizes for rate 2/3 cause a step in the rate-vs.- range curve around 1200Mbit/s (64-QAM, Rate 2/3, 2 spatial streams) Adding 1-, 2- and 4-bit constellations with Rate 2/3 code is not enough. Submission Slide 7 Sigurd Schelstraete, MaxLinear
March 2024 doc.: IEEE 802.11-24/0439r0 UEQM detailed evaluation Analyze UEQM on three different levels: 1. RvR curves 2. High-level statistics of successful UEQM Specifically, modulation difference between streams 3. Detailed analysis of successful MCS Results presented for: 2 Tx antennas, 2 Rx antennas and 4 Tx antennas, 2 Rx antennas, B LOS and D NLOS channels Submission Slide 8 Sigurd Schelstraete, MaxLinear
March 2024 doc.: IEEE 802.11-24/0439r0 2 TX antennas, 2 RX antennas RvR results Rate vs. Range (B LOS) (D NLOS) All modulation/code rate options allowed for UEQM Submission Slide 9 Sigurd Schelstraete, MaxLinear
March 2024 doc.: IEEE 802.11-24/0439r0 2 TX antennas, 2 RX antennas Used Code rate/constellation combinations B LOS D NLOS Submission Slide 10 Sigurd Schelstraete, MaxLinear
March 2024 doc.: IEEE 802.11-24/0439r0 D NLOS, 2 TX antennas, 2 RX antennas Optimal modulation difference B LOS D NLOS Diff 0 = EQM, Diff 1 = one QAM order difference, ... Diff = 2 Dominant for 2Tx/2Rx/2NSS Submission Slide 11 Sigurd Schelstraete, MaxLinear
March 2024 doc.: IEEE 802.11-24/0439r0 Selected MCS for Channel B LOS 2x2 (%) Reff cr 1/2 2/3 3/4 5/6 1/2 2/3 3/4 1/2 5/6 1/2 3/4 2/3 2/3 1/2 5/6 3/4 3/4 2/3 5/6 3/4 2/3 5/6 3/4 1/2 2/3 5/6 3/4 3/4 3/4 2/3 5/6 3/4 2/3 2/3 5/6 3/4 3/4 2/3 5/6 3/4 2/3 2/3 5/6 3/4 3/4 5/6 3/4 3/4 5/6 5/6 5/6 b1 2 2 2 2 4 4 4 6 4 6 4 6 4 6 4 6 4 6 4 6 6 6 6 8 8 b2 1 1 2 2 1 2 1 2 1 2 1 2 4 2 4 22 56 12 6 2 16 19 60 3 4 52 34 9 1 4 29 41 14 9 3 2 14 9 22 12 2 14 23 2 1 1 10 6 32 1 7 4 5 1 26 4 2 4 3 4 5 29 1 8 38 2 6 1 3 49 39 5 3 41 6 2 35 5 1 1 26 50 1 1.3 1.5 1.7 2 2.7 3 3 3.3 3.5 3.8 4 4 4 4.2 4.5 4.5 4.7 5 5.3 5.3 5.8 6 6 6.7 6.7 6.8 7.5 7.5 8 8.3 9 9.3 9.3 10 11 11 11 12 12 12 12 13 14 14 15 15 15 17 18 20 SNR (dB) 6 2 8 1 8 2 6 4 8 4 6 4 8 10 8 4 4 5 6 35 12 14 40 8 10 8 10 8 10 12 10 10 12 10 10 12 10 12 12 12 4 4 6 6 6 6 6 8 6 3 2 19 5 18 15 2 59 4 12 3 27 2 26 36 2 4 45 5 6 6 8 8 8 10 8 10 12 3 18 73 66 17 1 3 20 57 20 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 3 1 1 12 21 24 11 1 10 1 4 1 6 19 7 2 5 5 1 1 17 20 14 6 55 13 21 1 2 4 33 75 69 30 40 60 22 73 15 72 13 17 65 18 36 38 40 42 44 46 48 8 5 Equal MCS not used at low/medium SNR when unequal modulation is available Frequently recurring MCS (>2%) highlighted Submission Slide 12 Sigurd Schelstraete, MaxLinear
March 2024 doc.: IEEE 802.11-24/0439r0 4 TX antennas, 2 RX antennas Rate vs. Range (B LOS) (D NLOS) All modulation/code rate options allowed for UEQM Submission Slide 13 Sigurd Schelstraete, MaxLinear
March 2024 doc.: IEEE 802.11-24/0439r0 4 TX antennas, 2 RX antennas Used Code rate/constellation combinations B LOS D NLOS Submission Slide 14 Sigurd Schelstraete, MaxLinear
March 2024 doc.: IEEE 802.11-24/0439r0 D NLOS, 4 TX antennas, 2 RX antennas Optimal modulation difference Histogram (B LOS) (D NLOS) Diff 0 = EQM, Diff 1 = one QAM order difference, ... Diff = 1 dominant for 4Tx/2Rx/2NSS Submission Slide 15 Sigurd Schelstraete, MaxLinear
March 2024 doc.: IEEE 802.11-24/0439r0 Selected MCS for Channel B LOS 4x2 (%) Reff cr 1/2 2/3 3/4 5/6 1/2 2/3 3/4 1/2 5/6 1/2 3/4 2/3 2/3 1/2 5/6 3/4 3/4 2/3 5/6 3/4 2/3 5/6 3/4 1/2 2/3 5/6 3/4 3/4 3/4 2/3 5/6 3/4 2/3 2/3 5/6 3/4 3/4 2/3 5/6 3/4 2/3 2/3 5/6 3/4 3/4 5/6 3/4 3/4 5/6 5/6 5/6 b1 2 2 2 2 4 4 4 6 4 6 4 6 4 6 4 6 4 6 4 6 6 6 6 8 8 b2 1 1 2 2 1 2 1 2 1 2 1 2 4 2 4 23 56 12 5 2 18 17 59 4 3 52 36 8 1 3 29 41 13 11 3 2 16 10 18 13 3 12 23 3 1 3 10 2 32 2 6 5 5 2 25 6 1 5 3 3 6 33 8 1 35 1 5 1 3 1 47 40 5 3 43 5 3 33 3 2 26 50 1 1.3 1.5 1.7 2 2.7 3 3 3.3 3.5 3.8 4 4 4 4.2 4.5 4.5 4.7 5 5.3 5.3 5.8 6 6 6.7 6.7 6.8 7.5 7.5 8 8.3 9 9.3 9.3 10 11 11 11 12 12 12 12 13 14 14 15 15 15 17 18 20 SNR (dB) 6 2 8 1 8 2 6 4 8 4 6 4 8 10 8 4 4 2 7 36 14 1 17 34 8 10 8 10 8 10 12 10 10 12 10 10 12 10 12 12 12 4 4 6 6 6 6 6 8 6 5 2 2 18 7 19 14 1 61 2 12 3 1 25 24 42 4 49 6 6 6 8 8 8 10 8 10 12 1 1 19 1 71 65 17 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 3 1 2 1 10 13 20 27 1 10 1 1 5 9 16 1 7 3 4 15 18 13 5 54 15 24 1 1 34 36 38 40 42 44 46 48 4 34 74 68 31 41 58 18 77 19 70 19 65 3 21 55 9 Modulation difference between spatial streams is less for 4x2 MIMO, but equal modulation is still not used, except 10/10 and12/12 bit Frequently recurring MCS (>2%) highlighted Submission Slide 16 Sigurd Schelstraete, MaxLinear
March 2024 doc.: IEEE 802.11-24/0439r0 4 TX antennas, 4 RX antennas Rate vs. Range (B LOS) (D NLOS) All modulation/code rate options allowed for UEQM Submission Slide 17 Sigurd Schelstraete, MaxLinear
March 2024 doc.: IEEE 802.11-24/0439r0 4 TX antennas, 4 RX antennas Used Code rate/constellation combinations B LOS D NLOS Submission Slide 18 Sigurd Schelstraete, MaxLinear
March 2024 doc.: IEEE 802.11-24/0439r0 D NLOS, 4 TX antennas, 4 RX antennas Optimal modulation difference Histogram (B LOS) (D NLOS) Diff 0 = no difference between spatial stream 1 and spatial stream l (l=2,3,4), Diff 1 = one QAM order difference, ... Diff 0 doesn t necessarily mean equal modulation Submission Slide 19 Sigurd Schelstraete, MaxLinear
March 2024 doc.: IEEE 802.11-24/0439r0 Selected MCS for Channel B LOS 4x4 (%) reff 9 10 11 12 14 15 16 20 22 23 24 26 27 28 29 29 30 32 33 35 35 37 cr 2/31/22/32/33/42/32/33/43/42/35/62/32/33/43/45/63/45/65/63/43/43/45/63/43/43/45/65/65/65/65/6 b1 4 4 4 4 4 6 4 6 6 8 6 8 8 8 10 b2 2 1 2 2 2 4 4 4 4 4 6 6 6 6 b3 1 2 2 2 2 4 4 4 b4 40 9 1 1 1 44 25 6 4 23 35 39 12 19 15 14 15 8 48 16 2 20 31 28 29 61 6 81 1 33 11 1 17 50 3 3 3 4 5 5 5 8 9 SNR (dB) 8 10 10 10 12 12 12 12 12 12 12 12 12 12 12 12 6 8 8 8 10 10 12 10 12 12 12 12 12 12 12 12 4 6 6 6 6 8 8 8 10 1 2 2 4 4 4 4 4 50 1 60 1 47 18 1 8 75 7 52 21 1 7 35 19 8 10 6 6 8 10 12 10 12 6 6 6 38 28 1 32 44 1 64 23 7 10 52 29 6 8 13 22 48 10 4 6 8 8 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 1 5 1 40 42 44 46 2 32 6 66 5 9 32 47 48 5 35 38 With UEQM, the use of 4 spatial streams in 4x4 MIMO is much more likely Only showing frequently recurring MCS Submission Slide 20 Sigurd Schelstraete, MaxLinear
March 2024 doc.: IEEE 802.11-24/0439r0 Conclusions When available, unequal modulation is used in the majority of cases 2x2 beamforming: Preferred modulation order difference is 2, max. difference is 3 4x2 beamforming Preferred difference is 1, max. is 2 4x4 beamforming Preferred difference is 1 and 2, max. is 4 (sometimes 5) 2x2 has the highest UEQM gain, 4x2 the lowest gain For 4x4 MIMO, UEQM improves max. rates Submission Slide 21 Sigurd Schelstraete, MaxLinear
March 2024 doc.: IEEE 802.11-24/0439r0 References [1] UEQM Benefit Analysis, 24/0438 [2] UHR MIMO RvR enhancement with unequal modulation, 24/0016 [3] Unequal Modulation in MIMO TxBF in 11bn, 24/0113 [4] Improved Tx Beamforming with UEQM, 24/0117 [5] Unequal Modulation over Spatial Streams, 24/0176 Submission Slide 22 Sigurd Schelstraete, MaxLinear
March 2024 doc.: IEEE 802.11-24/0439r0 BACKUP SLIDES Submission Slide 23 Sigurd Schelstraete, MaxLinear
March 2024 doc.: IEEE 802.11-24/0439r0 Evaluation Method Prerequisites Sounding feedback per spatial stream l=1, ,L: SNR1, , SNRL Required SNR table1 SNRreq/dB B=1 B=2 B=4 B=6 B=8 B=10 B=12 K/N=1/2 -0.94 2.06 7.60 12.20 16.47 20.60 24.64 K/N=2/3 0.87 3.87 9.89 15.09 20.05 24.92 29.73 K/N=3/4 1.83 4.84 11.05 16.48 21.73 26.92 32.08 K/N=5/6 3.06 6.06 12.45 18.10 23.59 29.06 34.54 SNR gap ?? ??,??+ target BER/PER satisfied ???? ???req SNR margin ?? (allowed noise increase) ??= ???? ???req ?? ??,?? . 1The required SNR is derived for the AWGN channel with euqal SNR on each carrier. On the real channel, the SNR is different per carrier and a proper mapping to a single SNR per spatial stream is required. Submission Slide 24 Sigurd Schelstraete, MaxLinear
March 2024 doc.: IEEE 802.11-24/0439r0 Evaluation Method Outer loop for each code rate , 2/3, , 5/6 Identify n=1, ,L+1 sets of constellation ??= ?1, ,?? for L spatial streams ?? ??,?? + ? = 1, ,? ?2 ??+1: increase bl with highest SNR margin Calculate average margin/expected BER/PER and identify best setting per code rate From all code rates: select best overall setting Transmit data packet Check packet error rate and increase/decrease ?1: ???? ???req Submission Slide 25 Sigurd Schelstraete, MaxLinear
March 2024 doc.: IEEE 802.11-24/0439r0 Evaluation Method (Reduced set) SNRreq/dB B=1 B=2 B=4 B=6 B=8 B=10 B=12 K/N=1/2 -0.94 2.06 7.60 K/N=2/3 K/N=3/4 K/N=5/6 Relevant settings For each code rate 4.84 11.05 16.48 21.73 26.92 32.08 6.06 12.45 18.10 23.59 29.06 34.54 15.09 ?? 0 ???? if it exists otherwise ? = 1, ,? ?? ? ? For l= argmax?=1, ,? ??<?max ??: increase ?? ? ? ? ? ? = 1, ,? Until ?? ??< 0??= ?max L+1 settings per code rate Remark: Limitations of selectable constellation size may cause large SNR margin differences between spatial streams which the FEC can t compensate. Submission Slide 26 Sigurd Schelstraete, MaxLinear
March 2024 doc.: IEEE 802.11-24/0439r0 Evaluation Method Example No Limitations Channel SNR: 20dB Spatial streams: 1 or 2 1 stream: 2 streams SNRreq/dB B BER Goodput B BER Goodput B BER Goodput K/N=1/2 10/4 0.2/1 <1e-7 6.99 10/6 0.2/-3.6 2e-1 0 12/6 -3.9/-3.6 2e-1 0 K/N=2/3 8/2 0.7/4.7 <1e-7 6.66 8/4 0.7/-1.3 2e-1 0 10/4 -4.1/-1.3 2e-1 0 K/N=3/4 6/2 4.1/3.7 <1e-7 5.99 8/2 -1/3.7 2e-1 0 8/4 -1/-2.5 2e-1 0 K/N=5/6 6/2 2.7/2.5 1e-6 6.62 8/2 -2.8/2.5 2e-1 0 8/4 -2.8/-3.9 2e-1 0 SNRreq/dB B BER Goodput B BER Goodput K/N=1/2 10 3.2 <1e-7 4.99 12 -0.9 1.2e-1 0 K/N=2/3 8 3.7 <1e-7 5.33 10 -1.1 2e-1 0 K/N=3/4 8 2.0 <1e-7 5.99 10 -3.1 2e-1 0 K/N=5/6 6 5.6 <1e-7 4.99 8 0.2 2e-1 0 Submission Slide 27 Sigurd Schelstraete, MaxLinear
March 2024 doc.: IEEE 802.11-24/0439r0 Evaluation Method Example Existing mcs+rate 2/3 with all const. sizes Channel SNR: 20dB Spatial streams: 1 or 2 1 stream: 2 streams SNRreq/dB B BER Goodput B BER Goodput B BER Goodput K/N=1/2 4/4 13.1/1 <1e-7 3.99 K/N=2/3 8/2 0.7/4.7 <1e-7 6.66 8/4 0.7/-1.3 2e-1 0 10/4 -4.1/-1.3 2e-1 0 K/N=3/4 6/2 15.9/3.7 <1e-7 5.99 8/2 9.7/3.7 2e-1 0 8/4 4.7/3.7 2e-1 0 K/N=5/6 6/6 4.3/3.7 8e-2 0 8/6 -1/3.7 2e-1 0 10/6 -1/-2.5 2e-1 0 SNRreq/dB B BER Goodput B BER Goodput K/N=1/2 4 16 <1e-7 1.99 K/N=2/3 6 8.7 <1e-7 3.99 K/N=3/4 8 2.0 <1e-7 5.99 10 -3.1 2e-1 0 K/N=5/6 6 5.6 <1e-7 4.99 8 0.2 2e-1 0 Submission Slide 28 Sigurd Schelstraete, MaxLinear
March 2024 doc.: IEEE 802.11-24/0439r0 Evaluation Method Example Existing Settings Channel SNR: 20dB Spatial streams: 1 or 2 1 stream: 2 streams SNRreq/dB B BER Goodput B BER Goodput B BER Goodput K/N=1/2 4/4 13.1/1 <1e-7 3.99 K/N=2/3 6/6 5.6/-6.5 9e-3 0 K/N=3/4 6/2 15.9/3.7 <1e-7 5.99 8/2 9.7/3.7 2e-1 0 8/4 4.7/3.7 2e-1 0 K/N=5/6 6/6 4.3/3.7 8e-2 0 8/6 -1/3.7 2e-1 0 10/6 -1/-2.5 2e-1 0 SNRreq/dB B BER Goodput B BER Goodput K/N=1/2 4 16 <1e-7 1.99 K/N=2/3 6 8.7 <1e-7 3.99 K/N=3/4 8 2.0 <1e-7 5.99 10 -3.1 2e-1 0 K/N=5/6 6 5.6 <1e-7 4.99 8 0.2 2e-1 0 Submission Slide 29 Sigurd Schelstraete, MaxLinear
March 2024 doc.: IEEE 802.11-24/0439r0 Simulation Parameters Parameter Value TX/RX Antennas 2/2, 4/2 or 4/4 Spatial streams 1 to 4 (optimized) Bandwidth 160 MHz AP TX Power 21 dBm Channel model B LOS or D NLOS [8] Code rates , 2/3, , 5/6 Cconstellation size 1,2,4,6,8,10 12 bit Frequency 5.25GHz GI 1.6 s TX/RX SNR 40dB/42dB Channel aging/Doppler 1.2km/h, 6Hz BF quantization ideal Feedback carrier grouping 16 Overhead Sounding and MAC overhead not considered Submission Slide 30 Sigurd Schelstraete, MaxLinear