Study on Chronic Kidney Disease's Impact on Warfarin Disposition

a pilot study of the effect of chronic kidney n.w
1 / 44
Embed
Share

Explore the effects of Chronic Kidney Disease on the metabolism and clearance of Warfarin in the elderly population. Understand the implications of CKD on drug disposition and its potential consequences.

  • CKD
  • Warfarin
  • Drug Disposition
  • Elderly
  • Pharmacokinetics

Uploaded on | 0 Views


Download Presentation

Please find below an Image/Link to download the presentation.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.

You are allowed to download the files provided on this website for personal or commercial use, subject to the condition that they are used lawfully. All files are the property of their respective owners.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.

E N D

Presentation Transcript


  1. A Pilot Study of the Effect of Chronic Kidney Disease on Steady-State Disposition of Warfarin and Warfarin Alcohols Osama Alshogran, MS, PhD Assistant Professor of Clinical Pharmacy Faculty of Pharmacy Jordan University of Science and Technology 1

  2. Outline Introduction: CKD, PK, elderly Previous data: preclinical work Hypothesis & aims Major conclusions Acknowledgments 2

  3. Chronic Kidney Disease (CKD) Epidemiology Affects ~26 million Americans Prevalence: 13% in all US population Incidence: ESRD: 400 cases/million in the US Mortality: 15-20% of ESRD patients die annually Cost: $57.5 billion: annual Medicare costs for CKD - 28% of Medicare spending http://www.usrds.org/atlas.aspx 3 Levey, A. S. and Coresh, J. Lancet, 379:165-80 (2012). Weiner, D. E. Clin Pharmacol Ther, 86:566-9 (2009).

  4. CKD in Elderly In participants 70 years old and older in the 1999 2004 National Health and Nutrition Evaluation Survey (NHANES), the prevalence of CKD is 46.8% compared to 6.71% in those between 40 59 years of age Coresh J. Am. J. Kidney Dis. 41, 1-12, 2003 Leavy AS., et al. Am J Kidney Dis. 2009;53(3 Suppl 3):S4-16. 4

  5. PK in Elderly Absorption: decrease in small-bowel surface area, slowed gastric emptying, and an increase in gastric pH Distribution: body fat generally increases and total body water decreases. Serum albumin decreases and 1-acid glycoprotein increases Metabolism: Elimination through cytochrome P-450 enzyme system decreases with age Excretion: with aging there is a decrease in renal elimination 5

  6. Kidney Disease Affects Drug Disposition Absorption Distribution Metabolism Excretion 6 Velenosi, T. J. and Urquhart, B. L. Expert Opin Drug Metab Toxicol, 10:1131-43 (2014).

  7. Kidney Disease Affects Non-Renal Clearance 7

  8. Non-Renal Drug Clearance Major Pathways Oxidation (CYP450) Reduction Hydrolysis Phase I Glucuronidation Acetylation Sulfation Phase II Uptake Transporters Efflux Transporters Phase III 8 D ring B and Petzinger E. Drug Metab Rev. 2014 Aug;46(3):261-82 Rowland A et al. Int J Biochem Cell Biol 45:1121-1132, 2013.

  9. Phase I Reductases Quinone Reductases Short-chain Dehydrogenase Reductase (SDR) Reductase Enzymes Carbonyl Reducing Enzymes Aldo-Keto Reductase (AKR) 9 Barski OA, et al. Drug Metab Rev. 2008. 40:553-624. Malatkova, P. and Wsol, V. Drug Metab Rev, 46:96-123 (2014).

  10. Warfarin is a Highly Metabolized Drug CYPs OH-WAR Phase II conj. Warfarin Reductases 30% 50% WAR-Alcohols Urine Urine 15-20% Urine R/S 10 Jones DR et al. Drug Metab Rev, 2010. 42(1): p. 55-61. Lewis RJ et al. J Clin Invest. 1974 Jun;53(6):1607-17. Banfield C et al. Br J Clin Pharmacol. 1983 Dec;16(6):669-75.

  11. Warfarin Reduction Warfarin Warfarin Alcohols * R/S R/S Reductases RS, SR Alcohol 1 RR, SS Alcohol 2 11 Chan KK et al. J Med Chem. 1972 Dec;15(12):1265-70. Alshogran OY et al. J Chromatogr B. 2014 Jan 1;944:63-8.

  12. Warfarin Use in Kidney Disease is Challenging Bleeding: 2-5 fold increased risk of bleeding Stroke: Warfarin use double the risk of stroke (HR: 1.93) 89% increase in hospitalization from stroke Mortality: 27% increased risk of mortality Dosing: Moderate: 10% lower maintenance dose Severe: 20% lower maintenance dose Limdi, N.A., et al. J Am Soc Nephrol. 2009; 20(4): 912-921 Chan, K.E., et al. J Am Soc Nephrol. 2009; 20(4): 872-8112 Limdi, N.A., et al. Am J Kidney Dis. 2010; 56(5): 823-31 Chan, K.E., et al. J Am Soc Nephrol, 2009. 20(10): 2223-33

  13. Hypothesis & Aims Warfarin Warfarin Alcohols * R/S R/S Reductases CKD Major Objective: pharmacokinetics in kidney disease patients To assess steady-state warfarin 13

  14. Warfarin Reduction is Selectively Decreased in Cytosol 39% 14 Alshogran OY. Drug Metab Dispos. 2015 Jan;43(1):100-6.

  15. Warfarin Reduction is Decreased in Microsomes 87% 43% 15 Alshogran OY. Drug Metab Dispos. 2015 Jan;43(1):100-6.

  16. Decreased Protein Expression of Rat Hepatic Reductases in CKD 16 Alshogran OY. Drug Metab Dispos. 2015 Jan;43(1):100-6.

  17. Patients Demographics & Clinical Data Control (n=11) 70.9 9.7 ESRD (n=10) 74.8 5.3 P Characteristic Age (yr; mean SD) NS BMI (kg/m2; mean SD) Missing (n) 22.7 4.8 1 25.8 7.3 0 NS Gender [n (%)] Male Female Missing 7 (63.6) 3 (27.3) 1 (9.1) 7 (70%) 3 (30%) 0 (0) NS Race [n (%)] Caucasian African 11 (100) 0 (0) 8 (80) 2 (20) NS No. of Comorbid Conditions [n (%)] 0 or 1 2 - 4 5 5 (45.5) 6 (54.5) 0 (0) 0 (0) 7 (70) 3 (30) 0.016 Comorbid conditions were hypertension (10 patients), congestive heart failure (8), diabetes (6), chronic obstructive pulmonary disease (5), and coronary artery disease (4) 17

  18. Activity in Human Cytosol & Microsomes 27% 22% Alshogran OY. Drug Metab Lett. 2015;9(2):111-8 18

  19. Protein Expression of Human Hepatic Reductases 19 Alshogran OY. Drug Metab Dispos. 2015 Jan;43(1):100-6.

  20. Aim: To assess steady-state warfarin pharmacokinetics in kidney disease patients: a pilot study Patient population (n=25) Moderate CKD (n=4) eGFR 30-60 mL/min/1.73m2 Severe CKD (n=5) eGFR 15-30 mL/min/1.73m2 ESRD (n=5) eGFR <15 mL/min/1.73m2 ESRD/HD (n=5) eGFR <15 mL/min/1.73m2 Normal/mild CKD (n=6) eGFR> 60 mL/min/1.73m2 20 Levey AS. et al. Ann Intern Med. 2009;150:604-612.

  21. Patients Demographics & Clinical Characteristics All patients (n=25) Normal/Mild (n=6) Moderate (n=4) Severe (n=5) ESRD (n=5) ESRD/HD (n=5) P eGFR 31.4 26.6 72 6.8 42.8 5.2 19 3.4 12.6 2.8 4.6 2.0 <0.001 (mL/min/1.73m2) Age (year) 73.4 11 65 10.9 70.5 12.6 79.4 4.7 80.4 9.9 72.6 10.6 0.105 BMI (kg/m2) 29.8 4.9 29 2.4 30.0 3.4 30.5 4.3 29.5 5.3 30.4 8.8 0.989 Gender (% male) 52 50 50 60 80 20 0.439 Race (% white) 96 100 100 100 100 80 0.384 Serum albumin (g/dL) 3.9 0.35 4.2 0.32 4.1 0.25 3.9 0.22 4.0 0.29 3.7 0.48 0.171 Warfarin dose (mg/week) 28.6 14.3 39.5 15.4 25.6 8.3 28.6 14 20.3 8.7 28.4 19 0.270 Blood sampling time (h) 15.9 3.3 16.2 3.1 16.1 1.0 15.4 3.1 16.4 5.3 15.2 3.6 0.978 21

  22. Patients Demographics & Clinical Characteristics All patients (n=25) Normal/Mild (n=6) Moderate (n=4) Severe (n=5) ESRD (n=5) ESRD/HD (n=5) P CYP2C9 genotypes wild type (n, %) at least one mutant allele (n, %) 16 (64) 5 (31) 2 (12.5) 4 (25) 3 (19) 2 (12.5) 0.532 9 (36) 1 (11.1) 2 (24.4) 1 (11.1) 2 (24.4) 3 (33.3) VKORC1 genotypes extensive activity (n, %) intermediate/poor activity (n, %) high activity (n, %) 12 (48) 4 (33.3) 1 (8.3) 2 (16.7) 3 (25) 2 (16.7) 0.779 8 (32) 5 (20) 1 (12.5) 1 (20) 1 (12.5) 2 (40) 2 (25) 1 (20) 2 (25) 0 (0) 2 (25) 1 (20) 22

  23. Clinical Study Approach Study protocol was approved by the Research and Ethics Committee of Maisonneuve-Rosemont Hospital. All subjects provided written informed consents. Single blood sample was collected from patients who are under long-term warfarin therapy. Analytes were measured using LC-MS/MS. Total/ free warfarin and alcohols Total/ free warfarin enantiomers (R & S) Steady-state PK analyses: CLtotal = D/(Css ) CLu = CLtotal/fu fu= Cf/Ct Alcohols exposure S/R warfarin ratio 23 Jensen BP. et al. Br J Clin Pharmacol 2012. 74:797-805

  24. Warfarin Clearance & Kidney Disease No differences were found in warfarin clearance among CKD patients 24

  25. Predictors of Warfarin Clearance 25

  26. GFR Correlation with Warfarin Dose 26

  27. Age Correlation with Warfarin Dose Regression: age was the only significant modifier of average weekly warfarin dose 27

  28. Warfarin Alcohols Concentration & Kidney Disease Increased alcohol 2 dose- normalized concentrations in ESRD * p<0.05 28

  29. S/R Warfarin Ratio & Kidney Disease Increased S/R ratio in ESRD * p<0.05 29

  30. Conclusions As age increases, a significant decline in warfarin dose and clearance is observed. 6-fold increase in the exposure of warfarin alcohol 2 in ESRD (HD) compared to control/mild CKD patients. 2.5-fold increase in warfarin S/R ratio in ESRD/HD versus control/mild or severe CKD patients. 30

  31. Acknowledgments University of Pittsburgh Thomas Nolin, PharmD, PhD University of Montreal Vincent Pichette, MD, PhD Francois Leblond, PhD Jordan University of Science & Technology (JUST) 31

  32. Phase I Reductases Quinone Reductases NADPH Quinone Oxidoreductase (NQO)_Cytosol Short-chain Dehydrogenase Reductase (SDR) Reductase Enzymes Carbonyl Reductase (CBRs)_Cytosol Carbonyl Reducing Enzymes 11 -Hydroxysteroid Dehydrogenase (11 -HSD)_Microsomes Aldo-Keto Reductase (AKR) Aldehyde Reductase (AKR1A) and Aldose Reductase (AKR1B)_Cytosol 3 -Hydroxysteroid Dehydrogenase (AKR1C)_Cytosol 32 Barski OA, et al. Drug Metab Rev. 2008. 40:553-624. Malatkova, P. and Wsol, V. Drug Metab Rev, 46:96-123 (2014).

  33. Reductases & Drug Substrates Quinone Reductases Carbonyl Reducing Enzymes Short-chain Dehydrogenase Reductase (SDR) Aldo-Keto Reductase (AKR) Ketoprofen Ketotifen Loxoprofen Tibolone Befunolol Dolasetron Oracin Naltrexone Ketoprofen Nabumetone Naloxone Naltrexone Metyrapone Mitomycin C Daunorubicin Doxorubicin Oracin Benfluron Daunorubicin Doxorubicin Bupropion Eperisone Prednisone Acetoheximide Daunorubicin Doxorubicin 11 - HSD1 AKR 1A1 AKR 1C1 AKR 1C2 AKR 1C4 CBR1 CBR3 NQO1 Cytosol Microsomes Cytosol Quercetin, Menadione, Ethacrynic acid, Rutin Indomethacin 18 - glycyrrhetinic acid Flufenamic acid, Indomethacin, Phenolphthalein Barbital Dicoumarol 33 Matsunaga T, et al. Drug metabolism and pharmacokinetics. 2006. 21:1-18. Malatkova P and Wsol V. Drug Metab Rev. 2013

  34. Does CKD Affect Drug Reduction? 34 Turpeinen, M et al. Br J Clin Pharmacol, 64: 165-73 (2007) Yoshida, H. et al. Cancer Chemother Pharmacol, 33: 450-4 (1994).

  35. Reductase Drug Substrates by Class Drug Class Drug Class L-691,121* Ketotifen* Benfluron* Daunorubicin Dimefluron Doxorubicin Epirubicin Idarubicin* Iododoxorubicin Mitomycin C Oracin* Wortmannin* Warfarin Antiarrhythmic Antiasthmatic Anticancer Anticancer Anticancer Anticancer Anticancer Anticancer Anticancer Anticancer Anticancer Anticancer Anticoagulant Haloperidol* Timiperone* Boceprevir* S-1360 Levobunolol Metyrapone Ethacrynic Acid Pentoxifylline Oxisuran Eperisone HY-770 Tolperisone CS-670 Flobufen* Ketoprofen Loxoprofen Nabumetone* Methylnaltrexone Naloxone Naltrexone* Glucocorticoids Norethynodrel* Tibolone* Naftazone Menadione Antipsychotic Antipsychotic Antiviral Antiviral -Blocker Diagnostic Diuretic Hemorheological Immunosuppressive Muscle relaxant Muscle relaxant Muscle relaxant NSAID NSAID NSAID NSAID NSAID Opiate antagonist Opiate antagonist Opiate antagonist Steroid Steroid Steroid Vasoprotectant Vitamin (K3) Nafimidone Bupropion E/Z-10-oxonortriptyline Acetohexamide* Dolasetron* Oxcarbazepine* Fenofibrate Triadimefon Befunolol* Ketanserin* TA-510 Bromperidol* Anticonvulsant Antideprassant Antideprassant Antidiabetic Antiemetic Antiepileptic Antihyperlipidemia Antifungal Antihypertensive Antihypertensive Anti-inflammatoy Antipsychotic 35

  36. Pharmacological Activity/ in-vivo Alcohols possess anticoagulant activity - Decrease activity level of clotting factors (Vit K dependent) - Alcohol 1 = Alcohol 2 in the activity - RS: sustained decrease in coagulation activity - The activity is lower than that of warfarin 36 Lewis RJ et al. Ann N Y Acad Sci. 1971 Jul 6;179:205-12. Chan KK et al. J Med Chem. 1972 Dec;15(12):1265-70.

  37. Kinetics Excreted unchanged in urine: 15-20% of warfarin dose At dose of 0.75mg/kg: peak: R-warfarin (ng/mL) S-warfarin (ng/mL) RS 860 380 25 7-OH SS SR 1000 130 37 7-OH RR The clearance rate of RS alcohol is comparable to that of warfarin; nevertheless the clearance rate of the other alcohols (RR, SR, and SS) is 2.5-3 folds faster. Half-life: RS: 34 hrs SR, SS, RR: 13 hrs Lewis RJ et al. J Clin Invest. 1974 Jun;53(6):1607-17. Banfield C et al. Br J Clin Pharmacol. 1983 Dec;16(6):669-75. Lewis RJ et al. Ann N Y Acad Sci. 1971 Jul 6;179:205-12. 37 Chan KK et al. J Med Chem. 1972 Dec;15(12):1265-70.

  38. Activity in-vitro Activity was tested based on the inhibition of rat microsomal VKOR enzyme 38 Gebauer M. Bioorg Med Chem. 2007 Mar 15;15(6):2414-20.

  39. Protein binding Warfarin: 99% Alcohols: 98% OH-Met: 96% 39 Chan E et al. Chirality. 5610-615 (1993)

  40. Reductases By Drug Substrates 1B10 2.6 3.8 7.7 11.5 1A1 1C1 3.8 1C2 17.9 7.7 1C3 1C4 CBR1 16.7 CBR3 11B-HSD1 20.5 7.7 NQO1 40

  41. Multiple Regression Analysis P 0.01 0.025 <0.001 Outcome Total Warfarin CL (mL/min) Predictor Age Serum albumin Constant Beta -0.049 -0.124 10.613 SE 0.017 0.051 2.351 Total R-warfarin CL (mL/min) Age -0.044 0.018 0.024 Serum albumin Constant -0.154 10.981 0.054 2.449 0.009 <0.001 Total S-warfarin CL (mL/min) eGFR Constant 0.025 8.953 0.012 3.341 0.045 <0.001 Free Warfarin CL (mL/min) Age Constant -5.548 468.80 2.116 168.68 0.016 0.011 Free R-warfarin CL (mL/min) Age Constant -5.257 589.47 1.999 149.63 0.015 0.001 Free S-warfarin CL (mL/min) None 41

  42. Alcohols vs GFR 42

  43. S/R vs. GFR 43

  44. Protein binding 44

Related


More Related Content