
Time-Frequency Analysis: Motions and Transformations Overview
Explore the concepts of motions and transformations in time-frequency analysis, including horizontal shifting, vertical shifting, dilation, shearing, and rotation. Gain insights into Fourier spectrum, scaling, modulation, and more through detailed explanations and visual aids.
Download Presentation

Please find below an Image/Link to download the presentation.
The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.
You are allowed to download the files provided on this website for personal or commercial use, subject to the condition that they are used lawfully. All files are the property of their respective owners.
The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.
E N D
Presentation Transcript
235 VIII. Motions on the Time-Frequency Distribution Fourier spectrum 1-D form 2 j f t FT ( ) x t ( ) e X f f Modulation 0 0 f 0 f0 Scaling FT ( / ) x t a ( ) a X af Time-frequency analysis 2-D 2-D (1) Horizontal shifting (2) Vertical shifting (3) Dilation (4) Shearing (5) Generalized Shearing (6) Rotation (7) Twisting
236 8-1 Basic Motions (1) Horizontal Shifting ( x t t 2 j f t ) ( ( x , ) , ) ,Wigner f ,STFT, Gabor S t W t t f e 0 0 0 t x 0 (2) Vertical Shifting 2 j f t ( ) x t ( , ( , x ) ,STFT,Gabor ) ,Wigner e S t f W t f f 0 0 x f 0
237 (3) Dilation (scaling) 1 | | a t t f ( ) a ( , a ) ,STFT,Gabor x S af x t t ( , a ) ,WDF W af x
238 (4) Shearing 2 t j 2 j at = = ( ) x t ( ) y t ( ) x t ( ) y t e e a f 2 j at = ( ) ( , ) x S t f W t f ( ) ( , x t e y t = ) ,STFT,Gabor S t f at y t ( , ) ( , ) ,WDF W t f at x y 2 t j = ( ) ( , ) x S t f W t f ( ) ( means convolution) , ) , STFT,Gabor af f x t e y t a = ( S t y ( , ) ( , ) , WDF af f W t x y
239 2 j at (Proof): When = ( ) x t ( ), y t e ( ) ( ) ( ) = + * 2 j f , /2 /2 W t f x t x t e d x ( ) ( ) ( ) ( ) 2 2 j a t + j a t /2 /2 = + * 2 j f /2 /2 e e y t y t e d ( ) ( ) = + 2 * 2 j at j f /2 /2 e y t y t e d ( ) ( ) f at = + * 2 ( ) j /2 /2 y t y t e d ( ) = , W t f at y
240 (5) Generalized Shearing ( ) t j = ? ( ) x t ( ) y t e n = k ( ) t a t k = 0 k ( , ) S t f ( , ) ,STFT,Gabor S t f x y ( , ) ( , ) ,WDF W t f W t f x y J. J. Ding, S. C. Pei, and T. Y. Ko, Higher order modulation and the efficient sampling algorithm for time variant signal, European Signal Processing Conference, pp. 2143-2147, Bucharest, Romania,Aug. 2012. J. J. Ding and C. H. Lee, Noise removing for time-variant vocal signal by generalized modulation, APSIPA ASC, pp. 1-10, Kaohsiung, Taiwan, Oct. 2013
241 Q: n = = k If where ( ) x t ( ) ( ) y t ( ) exp h t h t IFT j a f k = 0 k then n 1 + 1 k ( , ) S t f ( , ) ,STFT,Gabor S t ka f f x y k 2 = 1 n k 1 + 1 k ( , ) ( , ) ,WDF W t f W t ka f f x y k 2 = 1 k
242 8-2 Rotation by /2: Fourier Transform = ( ) ( , )| | X t f t f t f ( ( )) S X f S FT x t = = | ( , )| ,STFT f t x 2 j ft ( , ) ( , ) ( ( , ) , ) ,WDF f t ,Gabor G W G W f t e X x X x (clockwise rotation by 90 ) Strictly speaking, the rec-STFT have no rotation property.
243 For Gabor transforms, if ( ) , x G t f ( ) = 2 , ( ) 2 t j f e e x d ( ) ( ) ( ) ( ) x t e = = 2 = ( ) 2 2 t j f j f t , ( ) G t f e e X d X f FT x t dt X ) ( ( ) then = 2 j t f , , G t f G f t e X x (clockwise rotation by 90 for amplitude) ( ) , X G t f e ( ) x u e ( )( Since ( ( ) x u e ) ) ( = 2 ( ( ) 2 2 t j f j u e dud (Proof): = 2 f u + ( ) 2 ( ) t j e d du ( ) 2 ( ) x u 2 2 + = = ( ) 2 ( ) ( ) t j f u t x u e e d du FT e du + f f u ) ) 2 2 2 2 = = ( ) f t j tf f , FT e e FT e e e ( ) ( ) x u e 2 t f u + + = 2 ( ) ( ) j f u , G t f e du X ( ) x u e ( ) 2 = = 2 2 ( ( )) 2 j tf j tu u f j t f , e e du G f t e x
244 If we define the Gabor transform as ( ) , x G t f e = , ( ) 2 ( ) 2 j f t t j f e e x d ( ) ( ) 2 = ( ) 2 j f t t j f , and G t f e e e X d X ( ) ( ) = , , G t f G f t then X x
245 ( ) ( ) ( ) = + x t * 2 j f , /2 /2 W t f x t e d If is the WDF of x(t), x ( ) ( ) ( ) = + X * 2 j f , /2 /2 W t f X t t e d is the WDF of X( f ), X ( ) ( ) then = , , W t f W f t X x (clockwise rotation by 90 ) time-frequency distribution
246 If ( ) X f ( ) x t e = ) t , then = 2 j f t ( ) IFT x t dt ( ) ( , ( ) ( ) = = t e 2 j t f , , W t f W f , , G t f G f X x X x (counterclockwise rotation by 90 ). ( ) ( ) = If X f x t , then ( ) ( ) = ( ) ( ) , , G t f G t f , . = , , W t f W t f X x X x (rotation by 180 ).
247 Examples: x(t) = (t), X(f) = FT[x(t)] = sinc( f ). WDF of (t) WDF of sinc( t ) 2 2 1 1 0 0 -1 -1 -2 -2 -2 -1 0 1 2 -2 -1 0 1 2 Gabor transform of (t) Gabor transform of sinc( t ) 3 3 2 2 1 1 0 0 -1 -1 -2 -2 -3 -3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
248 If a function is an eigenfunction of the Fourier transform, ( ) x t dt ( ) x f = 2 j f t = 1, j, 1, j e then its WDF and Gabor transform have the property of ( ) ( ) , , x x W t f W f t = ( ) ( ) = , , G t f G f t x x ( 90 Example: Gaussian function ( ) 2 exp t
249 Hermite-Gaussian function ( ) ( ) t ( ) t = 2 exp t H m m m d dt ( ) t ( ) t ( ) t 2 2 = 2 2 t t H C e e Hermite polynomials: , Cmis some constant, m m m ( ) ( ) ( ) = 2 H t = = 4 1 H t 1 H t t 2 0 1 = = + 3 2 4 2 4 3 16 24 3 H t t t H t t 3 4 ( ) t H ( ) t 2 , Dmis some constant, = 2 t e H D , m n m m n m,n= 1 when m = n, m,n= 0 otherwise. [Ref] M. R. Spiegel, Mathematical Handbook of Formulas and Tables, McGraw-Hill, 1990.
250 Hermite-Gaussian functions are eigenfunctions of the Fourier transform ( ) t e ( ) ( ) f m = 2 j f t dt j m m Any eigenfunction of the Fourier transform can be expressed as the form of = ( ) ( ) t k t a where r = 0, 1, 2, or 3, a4q+rare some constants ( ) k f q r + q r + 4 4 = 0 q ( ) ( ) r = 2 j f t k t e dt j
251 WDF for 1(t) Gabor transform for 1(t) 3 2 2 1 1 0 0 -1 -1 -2 -3 -2 -3 -2 -1 0 1 2 3 -2 -1 0 1 2 WDF for 2(t) Gabor transform for 2(t) 2 3 2 1 1 0 0 -1 -1 -2 -2 -3 -2 -1 0 1 2 -3 -2 -1 0 1 2 3
252 Problem: How to rotate the time-frequency distribution by the angle other than /2, , and 3 /2?
253 8-3 Rotation: Fractional Fourier Transforms (FRFTs) ( ) x t dt e e e 2 csc cot ( ) u u 2 j j t t 2 u = cot j 1 cot X j , = 0.5a When = 0.5 , the FRFT becomes the FT. Additivity property: ( ) u If we denote the FRFT as (i.e., ) F O ( ) ( ) F F F O O x t O x t = = ( ) x t X O F + then Physical meaning: Performing the FT a times.
254 cot cot 2 1 cot j ( ) x t dt 2 j t u e e e j ( ) u u csc j t = 2 X 2 Another definition 2 [Ref] H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing, New York, John Wiley & Sons, 2000. [Ref] N. Wiener, Hermitian polynomials and Fourier analysis, Journal of Mathematics Physics MIT, vol. 18, pp. 70-73, 1929. [Ref] V. Namias, The fractional order Fourier transform and its application to quantum mechanics, J. Inst. Maths. Applics., vol. 25, pp. 241-265, 1980. [Ref] L. B. Almeida, The fractional Fourier transform and time-frequency representations, IEEE Trans. Signal Processing, vol. 42, no. 11, pp. 3084-3091, Nov. 1994. [Ref] S. C. Pei and J. J. Ding, Closed form discrete fractional and affine Fourier transforms, IEEE Trans. Signal Processing, vol. 48, no. 5, pp. 1338-1353, May 2000.
255 ( ( ) ( ) = ( ) = FT x t X f ( ) ( ) ) ( ) FT FT x t FT FT FT x t x t = ( ) ) ( ) = X f IFT f t ( ( ) x t FT FT FT FT x t = What happen if we do the FT non-integer times? Physical Meaning: Fourier Transform: time domain frequency domain Fractional Fourier transform: time domain fractional domain Fractional domain: the domain between time and frequency (partially like time and partially like frequency)
256 Experiment: 2 2 2 = = = f(t): rectangle 1 1 1 0 0 0 -1 -1 -1 -5 0 5 -5 0 5 -5 0 5 2 2 2 = = = 1 1 1 0 0 0 F(w): sinc function -1 -1 -1 -5 0 5 -5 blue line: real part green line: imaginary part 0 5 -5 0 5 [Ref] L. B. Almeida, The fractional Fourier transform and time-frequency representations, IEEE Trans. Signal Processing, vol. 42, no. 11, pp. 3084-3091, Nov. 1994.
257 Time domain Frequency domain fractional domain Modulation Shifting Modulation + Shifting Shifting Modulation Modulation + Shifting Differentiation j2 f Differentiation and j2 f j2 f Differentiation Differentiation and j2 f ( ) ( ) ( ) FT exp 2 x t t j ft X f 0 0 ( ) ( ) ( ) fractional FT exp 2 sin cos x t t j j ut X u t 0 0 0 = 2 0sin cos t dx t dt ( ) ( ) f X f FT 2 j d dt d du ( ) x t ( ) ( ) fractional FT u X u + 2 sin cos j X u
258 [Theorem] The fractional Fourier transform (FRFT) with angle is equivalent to the clockwise rotation operation with angle for the Wigner distribution function (or for the Gabor transform) FRFT with parameter = with angle For the WDF If Wx(t, f ) is the WDF of x(t), and WX (u, v) is the WDF of X (u), (X (u) is the FRFT of x(t)), then ( ) ( ) = sin , sin + , cos cos W u v W u v u v X x
259 For the Gabor transform (with standard definition) If Gx(t, f ) is the Gabor transform of x(t), and GX (u, v) is the Gabor transform of X (u), then ( ) , X G u v e ( ) 2 2 2 [ 2 + )sin(2 )/2] = sin , sin + sin ( j uv u v cos cos G u v u v x ( ) ( ) = sin , sin + , cos cos G u v G u v u v X x For the Gabor transform (with another definition on page 244) ( ) ( , cos sin , sin X x G u v G u v ) = + cos u v The Cohen s class distribution and the Gabor-Wigner transform also have the rotation property
260 The Gabor Transform for the FRFT of a cosine function 5 5 5 0 0 0 -5 -5 -5 -5 0 5 -5 0 = 5 -5 (c) G (t, ) F = (c) = 2 /6 0 5 (a) G (t, ) f = (a) = 0 (b) G (t, ) F (b) = /6 5 5 5 0 0 0 -5 -5 -5 -5 (d) G (t, ) F = (d) = 3 /6 0 5 -5 0 5 -5 0 5 = (f) G (t, ) F = (f) = 5 /6 (e) G (t, ) F (e) = 4 /6
261 The Gabor Transform for the FRFT of a rectangular function. 5 5 5 0 0 0 -5 -5 -5 -5 0 5 -5 0 5 -5 0 5 (a) = 0 (b) = /6 (c) = 2 /6 5 5 5 0 0 0 -5 -5 -5 -5 0 5 -5 0 5 -5 0 5 (d) = 3 /6 (e) = 4 /6 (f) = 5 /6
262 8-4 Twisting: Linear Canonical Transform (LCT) 1 b a b d b 2 ( ) x t dt 2 2 j u j t t 1 jbe e e e when b 0 j u ( ) u ( x du = X ( , , , ) a b c d ( ) u ) when b = 0 2 = j cdu X d ( ,0, , ) a c d ad bc = 1 should be satisfied Four parameters a, b, c, d
263 Additivity property of the WDF ( ) u = ( , , , ) a b c d F O ( ) x t X If we denote the LCT by , i.e., ( , , , ) a b c d F O ( , , , ) a b c d then ( F , , , ) ( F , , , ) ( F , , , a b c d ) a b c d = a b c d ( ) x t ( ) x t O O O 3 3 3 3 2 2 2 2 1 1 1 1 a c b d a c b d a c b d 3 3 2 2 1 1 = where 3 3 2 2 1 1 [Ref] K. B. Wolf, Integral Transforms in Science and Engineering, Ch. 9: Canonical transforms, New York, Plenum Press, 1979.
264 ( ) , W u v If then is the WDF of X(a,b,c,d)(u), where X(a,b,c,d)(u) is the LCT of x(t), X ( , , , ) a b c d ( ( ) ( ) = + , , W u v W du bv ) cu ( x av ) X x ( , , , ) a b c d + + = , , W au bv cu dv W u v X ( , , , ) a b c d LCT == twisting operation for the WDF The Cohen s class distribution also has the twisting operation.
265 LCT (0, 0) (0, 0) f-axis f-axis (4,3) (-1, 2) (1,2) (0, 1) t-axis t-axis (1,-2) (0,-1) (-1, -2) (-4,-3)
266 1 b a b d b 2 ( ) x t dt 2 2 j u j t t 1 jbe e e e when b 0 j u ( ) u ( x du = X ( , , , ) a b c d ( ) u ) when b = 0 2 = j cdu X d ( ,0, , ) a c d ad bc = 1 should be satisfied = /2 Fourier transform fractional Fourier transform cos sin sin cos a c b d = = 0 identity operation 1 0 a c b d z = 1 linear canonical transform = - /2 inverse Fresnel transform (convolution with a chirp) Fourier transform 1 0 1 a c b d = chirp multiplication X e ( ) u ( ) x u 2 = j u ( ,0, , ) a c d 1/ 0 a c b d = 0 scaling
267 Linear Canonical Transform (1) Fresnel Transform ( ) k ( ) 2 2 x x + y y ( ) ( ) j ikz z e i e ( ) i i = 2 z , , U x y U x y dx dy o i i i i i k = 2 / : wave number : wavelength z: distance of propagation k k ( ) 2 x x 2 ( ) j y y e ( ) j 1 1 ( ) i i = ikz 2 z , , U x y e e U x y dxdy 2 z o i i i i j z j z i k (2 1-D LCT) 2 2 j x j x ( ) ( ) = , , e U x y e U x y z 2 z i i i i 1 0 a c b d z = Fresnel transform LCT 1
268 (2) Spherical lens, refractive index = n k 2 2 + j x y ( ) ( ) = ik n 2 f , , U x y e e U x y o i f : focal length : thickness of lens 1 0 1 a c b d lens LCT = 1/ f
269 (3) Free spaces + Spherical lens lens, (focal length = f) free space, (length = z2) free space, (length = z1) Output Input Input output LCT z 1 2 z z f + 2 1 ( ) z z 1 0 1 0 1 1 0 1 2 a c b d z z f 2 1 = = 1 1/ 1 f z f 1 1 1 f
270 z 1 2 z z f + 2 1 ( ) z z = 1 2 a c b d f z f 1 1 1 f z1= z2= 2f = 1 1 0 a c b d 1 f z1= z2= f Fourier Transform + Scaling 0 f a c b d = 1 0 f z1= z2 fractional Fourier Transform + Scaling
271 LCT 2 2 LCT [1] H. M. Ozaktas and D. Mendlovic, Fractional Fourier optics, J. Opt. Soc. Am. A, vol.12, 743-751, 1995. [2] L. M. Bernardo, ABCD matrix formalism of fractional Fourier optics, Optical Eng., vol. 35, no. 3, pp. 732-740, March 1996.