Transitive Re-identification Algorithm in Surveillance Networks

introduction n.w
1 / 25
Embed
Share

"Explore the Transitive Re-identification Algorithm for enhancing person tracking in multi-camera surveillance networks. This research delves into the motivation, experiments, and future implications of this cutting-edge technique."

  • Transitive Algorithm
  • Re-identification
  • Surveillance Networks
  • Person Tracking
  • Experimentation

Uploaded on | 0 Views


Download Presentation

Please find below an Image/Link to download the presentation.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.

You are allowed to download the files provided on this website for personal or commercial use, subject to the condition that they are used lawfully. All files are the property of their respective owners.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.

E N D

Presentation Transcript


  1. Introduction Motivation The Transitive Alg. Experiments Summary & Future Work Transitive Re-identification Yulia Brand? Tamar Avraham? Michael Lindenbaum? ?Electrical Engineering Department ?Computer Science Department Technion - I.I.T. Haifa, Israel This research was supported by the MAGNET program in the Israeli ministry of industry and commerce, by the Israeli ministry of science and by the E. and J. Bishop research fund. BMVC 2013

  2. Introduction ReIDentification (ReID) Motivation The Transitive Alg. Experiments Summary & Future Work Camera A, time t Camera B, time t+ t upper image from: A. Bialkowski, S. Denman, P. Lucey, S. Sridharan, and C. B. Fookes. A database for person re-identification in multi- camera surveillance networks. (DICTA 2012) lower images: courtesy of Marco Cristani

  3. Introduction ReIDentification Motivation The Transitive Alg. Experiments Summary & Future Work

  4. Introduction ReIDentification Motivation The Transitive Alg. Experiments Summary & Future Work 100 ICT learning based 90 80 SDALF - direct Recognition % 70 60 50 40 30 ICT trained on 3-7 data SDALF for cameras 3-7 20 10 1 2 3 4 5 6 7 8 9 10 11 12 rank score

  5. Introduction ReIDentification Motivation The Transitive Alg. Experiments Summary & Future Work Camera A F F same C C Camera B not same F F * Image from: L. Bazzani, M. Cristani, and V. Murino. Symmetry-driven accumulation of local features for human characterization and re- identification.

  6. Introduction Motivation Motivation The Transitive Alg. Experiments Summary & Future Work ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ??

  7. Introduction Motivation Motivation The Transitive Alg. Experiments Summary & Future Work By applying the transitive algorithm: By recursively applying the transitive algorithm: ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? ?? non-directly trainable pairs directly trainable pairs

  8. Introduction Motivation Motivation The Transitive Alg. Experiments Summary & Future Work ?? ?? ?? ?? ?? ?? ??+?

  9. Introduction The Transitive Algorithm Motivation The Transitive Alg. Experiments Summary & Future Work ?? A ?? ?? ?? B ?? ?? ?? ?? C ??

  10. Introduction The Transitive Algorithm Motivation The Transitive Alg. Experiments Summary & Future Work A ??? B ??? C Training Test A B B C A C = ? = ? = ?

  11. Introduction The Transitive Algorithm Motivation The Transitive Alg. Experiments Summary & Future Work A B 100 90 ICT C 80 Recognition % 70 SDALF 60 50 Naive ICT 40 30 ICT trained on 3-7 data SDALF for cameras 3-7 ICT trained on 3-5 and 5-7 data 20 10 1 2 3 4 5 6 7 8 9 10 11 12 rank score

  12. Introduction The Transitive Algorithm Motivation The Transitive Alg. Experiments Summary & Future Work A ??? ?)} B ?,?? ?)} ???= {(?? ?,?? ???= {(?? ?, ? = ? ?, ? = ? ??? ?) = ?,?? ?) = ???(?? ?,?? ???(?? ?, ? ? ?, ? ? C ?(???|??,??) ?(???|??,??) ? ?????,?? =? ? ?????,?? = ? ???,???= ???,???= ???,?? ??,??)??? ??? {?,?} ??? {?,?} ?? ?? ? ?????,?? = ? ???,???= ???,???= ?????,?? ,??)???(??)??? ??? {?,?} ??? {?,?} ?? ??

  13. Introduction The Transitive Algorithm Motivation The Transitive Alg. Experiments Summary & Future Work A ?)} B ?,?? ?)} ???= {(?? ?,?? ???= {(?? ?, ? = ? ?, ? = ? ?) = ?,?? ?) = ???(?? ?,?? ???(?? ?, ? ? ?, ? ? C ?(???|??,??) ?(???|??,??) ? ?????,?? =? .... ? ?????,??? ?????,?? ????? ??? ? ?? ? ?????,??? ?????,?? ????? ??? ?? ? ?????,?? =

  14. Introduction The Transitive Algorithm Motivation The Transitive Alg. Experiments Summary & Future Work A B ? ?????,??? ?????,?? ????? ??? ? ?? ? ?????,??? ?????,?? ????? ??? ?? ? ?????,?? = C

  15. Introduction The Transitive Algorithm Motivation The Transitive Alg. Experiments Summary & Future Work A B ? ?????,??? ?????,?? ????? ??? ? ?? ? ?????,??? ?????,?? ????? ??? ?? ? ?????,?? = C ? ?? ?? ? ?????,??? ?????,?? ?? ? ?????,?? ? ?? ?? ? ?????,??? ?????,?? ? ??

  16. Introduction Synthetic Experiment 1 Motivation The Transitive Alg. Experiments Summary & Future Work A ?? ?? ?? ?? ?? ?? B 50 50 50 50 50 50 50 50 20 20 20 20 0 0 0 0 0 0 0 0 0 0 0 0 -20 -20 -20 -20 -50 -50 -50 -50 -50 -50 -50 -50 C -50 -50 -50 -50 0 0 0 0 50 50 50 50 -40 -20 -40 -20 -40 -20 -40 -20 0 0 0 0 20 20 20 20 40 40 40 40 -50 -50 -50 -50 0 0 0 0 50 50 50 50 100 100 100 100 Recognition % Recognition % Recognition % Recognition % ICT trained on AC data Naive ICT Naive ICT ICT trained on AC data ICT trained on AC data Naive ICT TRID TRID TRID Naive ICT TRID ICT trained on AC data 50 50 50 50 0 0 0 0 rank score score score rank score rank rank 0 0 0 0 20 20 20 20 40 40 40 40 60 60 60 60 80 80 80 80 100 100 100 100 ?? ?? ?? ?? ?? ?? ? ?????,??: ????? ??? ??? ??????? ?? ?? ???? ????

  17. Introduction Synthetic Experiment 2 Motivation The Transitive Alg. Experiments Summary & Future Work A ?? ?? ?? ?? ?? ?? B 20 20 50 50 50 50 20 0 0 50 50 0 0 0 0 0 -20 -20 0 0 -50 -50 -50 -50 C -20 -50 -50 0 0 50 50 -20 -20 0 0 20 20 -50 -50 0 0 50 50 -50 -50 (d) (d) -50 0 50 -20 0 20 -50 0 50 100 100 Recognition % Recognition % (d) 100 Recognition % ICT trained on AC data Naive ICT ICT trained on AC data Naive ICT TRID TRID 50 50 ICT trained on AC data Naive ICT TRID 80 90 80 90 50 0 0 rank rank score score 0 0 10 10 20 20 30 30 40 40 50 50 60 60 70 70 100 100 0 rank score 0 10 ?? ?? 20 30 40 50 60 70 80 90 100 ?? ?? ?? ?? ? ?????,??: ????? ??? ??? ??????? ?? ?? ???? ????

  18. Introduction SAIVT-SoftBio Experiment Motivation The Transitive Alg. Experiments Summary & Future Work image from: A. Bialkowski, S. Denman, P. Lucey, S. Sridharan, and C. B. Fookes. A database for person re-identification in multi-camera surveillance networks. (DICTA 2012)

  19. Introduction SAIVT-SoftBio Experiment Motivation The Transitive Alg. Experiments Summary & Future Work C5 C7 C3 [A B C] = C5 C7 C1 [A B C] = 100 100 90 90 80 80 Recognition % Recognition % 70 70 60 60 50 50 ICT trained on AC data Naive ICT TRID SDALF 40 40 ICT trained on AC data Naive ICT TRID SDALF 30 30 20 20 0 10 0 10 2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 rank score rank score C3 C8 C1 [A B C] = C3 C1 C5 [A B C] = 100 100 90 90 80 80 Recognition % Recognition % 70 70 60 60 50 50 ICT trained on AC data Naive ICT TRID SDALF ICT trained on AC data Naive ICT TRID SDALF 40 40 30 30 20 20 0 0 10 10 2 4 6 8 10 12 14 5 10 15 rank score rank score

  20. Introduction SAIVT-SoftBio Experiment Motivation The Transitive Alg. Experiments Summary & Future Work C5 C7 C3 [A B C] = 100 90 80 Recognition % 70 60 50 40 ICT trained on AC data Naive ICT TRID SDALF 30 20 0 10 2 4 6 8 10 12 rank score B A C

  21. Introduction SAIVT-SoftBio Experiment Motivation The Transitive Alg. Experiments Summary & Future Work C5 C7 C3 [A B C] = C5 C7 C1 [A B C] = 100 100 90 90 80 80 Recognition % Recognition % 70 70 60 60 50 50 ICT trained on AC data Naive ICT TRID SDALF 40 40 ICT trained on AC data Naive ICT TRID SDALF 30 30 20 20 0 10 0 10 2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 rank score rank score C3 C8 C1 [A B C] = C3 C1 C5 [A B C] = 100 100 90 90 80 80 Recognition % Recognition % 70 70 60 60 50 50 ICT trained on AC data Naive ICT TRID SDALF ICT trained on AC data Naive ICT TRID SDALF 40 40 30 30 20 20 0 0 10 10 2 4 6 8 10 12 14 5 10 15 rank score rank score

  22. Introduction Motivation The Transitive Alg. Experiments Summary & Future Work SAIVT-SoftBio Experiment A B C C3 C8 [A B C] = C1 100 90 80 Recognition % 70 60 50 ICT trained on AC data Naive ICT TRID SDALF 40 30 20 0 10 5 10 15 rank score

  23. Introduction Summary Motivation The Transitive Alg. Experiments Summary & Future Work

  24. Introduction Future Work Motivation The Transitive Alg. Experiments Summary & Future Work ?? ?? ?? ??

  25. Introduction Thank-You. Motivation The Transitive Alg. Experiments Summary & Future Work

More Related Content