
Understanding Classical Mechanics: Equations of Motion on Parabolic Surfaces
Explore the equations of motion for a particle on a parabolic surface influenced by gravity, highlighting stable circular motion, and transforming to polar coordinates. Delve into the Euler-Lagrange equations for a deeper understanding.
Download Presentation

Please find below an Image/Link to download the presentation.
The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.
You are allowed to download the files provided on this website for personal or commercial use, subject to the condition that they are used lawfully. All files are the property of their respective owners.
The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.
E N D
Presentation Transcript
PHY 711 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF Olin 103 Plan for Lecture 10: Continue reading Chapter 3 & 6 1. Constants of the motion 2. Conserved quantities 3. Legendre transformations 9/21/2018 PHY 711 Fall 2018 -- Lecture 10 1
9/21/2018 PHY 711 Fall 2018 -- Lecture 10 2
Public Talk Lecturer -- Mon. 9/24/2018 at 7 PM 9/21/2018 PHY 711 Fall 2018 -- Lecture 10 3
Physics Colloquium: Tue. 9/25/2018 at 4 PM Olin 101 Prof. Dava Newman Lecturer from MIT 9/21/2018 PHY 711 Fall 2018 -- Lecture 10 4
Summary of Lagrangian formalism (without constraints) independen For = L dt generalize t q coordinate d s ( : ) t q ( , ) q ) ( ( , ) t L L q t t d L = 0 q L d L = = Note that if then , 0 0 q dt q L (constant) = q 9/21/2018 PHY 711 Fall 2018 -- Lecture 10 5
Consider a particle of mass m moving frictionlessly on a parabola z=c(x2+y2) under the influence of gravity. Find the equations of motion, particularly showing stable circular motion. ( ) m ( ) ( ) 2 = + + + + 2 2 2 2 2 ( , , , ) L x y x y 4 x y c xx yy mgc x y 2 9/19/2018 PHY 711 Fall 2018 -- Lecture 9 6
( ) m ( ) ( ) 2 = + + + + 2 2 2 2 2 ( , , , ) L x y x y 4 x y c xx yy mgc x y 2 Transform to polar coor cos x r = dinates; = sin y r m ( ) ( , , , ) L r Euler-Lagrange equations L L d dt = + + 2 2 2 2 2 2 c r r 2 4 r r r mg cr 2 dmr dt = 2 0 0 = 0 2 Let (constant) mr z L r d dt L r = 0 9/19/2018 PHY 711 Fall 2018 -- Lecture 9 7
m ( ) ( , , , ) L r = + + 2 2 2 2 2 2 c r r 2 4 r r r mgcr 2 L r d dt L r = 0 ( ) d dt d dt ( ) + 1 4 + = 2 2 2 2 2 4 2 0 mr mr c r mgcr mr c r ( ) 2 ( ) + 1 4 + = 2 2 2 2 c r 2 4 0 mgcr mr c r mr z 3 mr Now consider the case where initially the particle is moving in a circle 2 g c = = 2 at height and 2 with 0. z mz mr g c r 0 0 0 0 z = + Consider small perturbation to the motion: r r r 0 9/19/2018 PHY 711 Fall 2018 -- Lecture 9 8
( ) 2 d dt ( ) + 1 4 + = 2 2 2 2 c r 2 4 0 mgcr mr c r mr z 3 mr Consider small perturbation to the motion: where initially the particle is moving in a circle = + r r r 0 2 g c = = 2 at height and 2 with 0. z m z mr gc r 0 0 0 0 z Keeping terms to linear orde r: ( ) 1 2 + = 2 2 c r 8 0 mgc r m r 0 8 gc = r r 1 2 + 2 2 c r 0 8 gc = + cos r A t + 2 2 1 2 c r 0 9/19/2018 PHY 711 Fall 2018 -- Lecture 9 9
Examples of constants of the motion: Example one : 1 - dimensiona potential l : ( ) = + + 2 2 2 ( ) L m x y z V z 1 2 d = 0 (constant) m x m x p x dt d = 0 (constant) m y m y p y dt d V = m z dt z 9/21/2018 PHY 711 Fall 2018 -- Lecture 10 10
Examples of constants of the motion: Example 2: Motion in a central potential = + ( ) 2 2 2 ( ) L m r r V r 1 2 dmr dt d mr dt = 2 2 0 (constant) mr p 2 p mr V r V r = = 2 mr 3 9/21/2018 PHY 711 Fall 2018 -- Lecture 10 11
Recall alternative form of Euler-Lagrange equations: Starting from : ( L ) = ( , ) ( , ) L L q t q t t d L = 0 dt q q dL L L L = + + Also note that : q q dt q q t d L L = + q dt q t d L L = L q dt q t 9/21/2018 PHY 711 Fall 2018 -- Lecture 10 12
Additional constant of the motion: L = If ; 0 t d L L = = the n : 0 L q dt q t L + = (constant) L q E q - Example = : 1 one dimensiona potential l : ( ) + 2 2 2 ( ) L m x y z V z 1 2 ( ( ) ) d + + = 2 2 2 2 2 2 ( ) 0 m x y z V z m x m y m z 1 2 dt ( For this case, we also have ( ) ) + + + = 2 2 2 ( ) (constant) x mx p m x y z V z E 1 2 and my p y 2 y p 2 x p = + + + 2 ( ) E mz V z 1 2 2 2 m m 9/21/2018 PHY 711 Fall 2018 -- Lecture 10 13
Additional constant of the motion -- continued: ; 0 If t L = d L L = = the n : 0 L q dt q t L = (constant) L q E q Example = 2 Motion : + central a in potential ( ) 2 2 2 ( ) L m r r V r 1 2 ( ( ) ) d + = 2 2 2 2 2 2 ( ) 0 m r r V r m r mr 1 2 dt ( ( ) ) + + = 2 2 2 ( ) (constant) 2 mr m r r V r so have E 1 2 For this case, we al p 2 p mr = + + 2 ( ) E mr V r 1 2 2 2 9/21/2018 PHY 711 Fall 2018 -- Lecture 10 14
Other examples q ( ) ( ) = + + + + 2 2 2 L m x y z B xy yx 1 2 0 2 c L z = = 0 (constant) mz p z L q = E q L q ( ) ( ) = + + + + 2 2 2 m x y z B xy yx 0 2 c q ( ) ( ) + + + 2 2 2 m x y z B xy yx 1 2 0 2 c 2 z p ( ) ( ) = + + = + + 2 2 2 2 2 m x y z m x y 1 2 1 2 2 m 9/21/2018 PHY 711 Fall 2018 -- Lecture 10 15
Other examples q c ( ) = + + 2 2 2 L m x y z B xy 1 2 0 L z L x = = 0 (constant) mz p z = = 0 (constant) mx p x L q = E q L q c ( ) = + + 2 2 2 m x y z B xy 0 q c ( ) + + + 2 2 2 m x y z B xy 1 2 0 2 2 p 2 zp m ( ) = + + = + + 2 2 2 2 m x y z my x 1 2 1 2 2 m 9/21/2018 PHY 711 Fall 2018 -- Lecture 10 16
Lagrangian picture independen For q L L generalize t q coordinate d s ( : ) t q ( , ) L ) = ( ( , ) t t t d L = 0 dt q q Second order differenti equations al for ( ) q t Switching variables Legendre transformation 9/21/2018 PHY 711 Fall 2018 -- Lecture 10 17
Mathematical transformations for continuous functions of several variables & Legendre transforms: Simple change of variables: ( , ) ( , ) ??? z x y x y z z z = + ( , ) z x y dz dx dy x y y x x x x = = + / ) )y ( , ) x y z dx dy dz y z y y ( ( z z But : x / y z x z 9/21/2018 PHY 711 Fall 2018 -- Lecture 10 18
Simple change of variables -- continued: z z = + ( , ) z x y dz dx dy x y y x x x = + ( , ) x y z dx dy dz y z y z ( ( ) ) / / z z y x 1 / x y x z = = x ( ) z x y z y y 9/21/2018 PHY 711 Fall 2018 -- Lecture 10 19
Simple change of variables -- continued: z z Example: = + ( , ) z x y dz dx dy x y 2 + = x y ( , ) z x y y e x x x ( ) 1/2 = ( , ) x y z ln z y = + ( , ) x y z dx dy dz y z y z ( ( ) ) / / z z y x ? x y = 1 / x z ? = x ( ) z x y z y y 1 z 1 2 + x y 1 e xe = = ( ) 1/2 2 + ( ) x y 2 1/2 xe 2 ln 2 z y + x y 2 2 ln z y 9/21/2018 PHY 711 Fall 2018 -- Lecture 10 20
Mathematical transformations for continuous functions of several variables & Legendre transforms continued: ) , ( y x z z = + z x y dz dx dy y x z z Let and u v x y y x Define new function w u w y = + ( , ) w u y dw du dy y u = = = + For dw , w xdu z + ux vdy dw dz udx xdu udx vdy udx xdu = w u w y z y = = = x v y u x 9/21/2018 PHY 711 Fall 2018 -- Lecture 10 21
For thermodynamic functions: = Internal energy : ( , ) U U S V = dU TdS PdV U U = + dU dS dV S V V S U U = = T P S : V V S = = + Enthalpy ( , ) H H S P U PV H H = + + = + = + dH dU PdV VdP TdS VdP dS dP S P P S H H = = T V S P P S 9/21/2018 PHY 711 Fall 2018 -- Lecture 10 22
9/21/2018 PHY 711 Fall 2018 -- Lecture 10 23
Lagrangian picture independen For L L generalize t q coordinate d s ( : ) t q ( , ) L ) = ( ( , ) t q t t d L = 0 dt q q Second order differenti equations al for ( ) q t Switching variables Legendre transformation ( t q H H = , ) ) Define : ( ( , ) p t t L = = where H q p L p q L L L = + dH q dp p d q dq d q dt q q t 9/21/2018 PHY 711 Fall 2018 -- Lecture 10 24
Hamiltonian picture continued ( , ) ) = ( ( , ) H H q t p t t L = = where H q p L p q L L L = + dH q dp p d q dq d q dt q q t H H H = + + dq dp dt q p t H L d L H L H = = = = q p p q dt q q t t 9/21/2018 PHY 711 Fall 2018 -- Lecture 10 25