Understanding Electromagnetic Waves and Maxwell's Equations

Download Presenatation
phy 712 electrodynamics 9 9 50 am mwf olin 103 n.w
1 / 20
Embed
Share

Delve into the fascinating realm of electromagnetic waves and Maxwell's equations as we explore the sources of radiation, dipole radiation patterns, and the formulation of Maxwell's equations in terms of vector and scalar potentials. Discover the intricacies of Lorentz gauge, solutions for the electromagnetic field, and the generation of electromagnetic waves from time-harmonic sources. Gain insights into charge and current densities, continuity conditions, and general source equations in this comprehensive lecture series.

  • Electromagnetic Waves
  • Maxwells Equations
  • Radiation Patterns
  • Lorentz Gauge
  • Continuity Conditions

Uploaded on | 0 Views


Download Presentation

Please find below an Image/Link to download the presentation.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.

You are allowed to download the files provided on this website for personal or commercial use, subject to the condition that they are used lawfully. All files are the property of their respective owners.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.

E N D

Presentation Transcript


  1. PHY 712 Electrodynamics 9-9:50 AM MWF Olin 103 Plan for Lecture 23: Sources of radiation Start reading Chap. 9 A. Electromagnetic waves due to specific sources B. Dipole radiation patterns 03/20/2017 PHY 712 Spring 2017 -- Lecture 23 1

  2. 03/20/2017 PHY 712 Spring 2017 -- Lecture 23 2

  3. Comment on Mid-term exam n ( ) = + k x y sin cos i i 0 i c E ( ) = + + E x y z cos sin 0 2 n i i i 0 i ( ) = k x y sin cos i i 0 R c ( ) = + + s p E z x y cos sin E E i i 0 0 0 R R R ' c n ( ) = + k x y sin cos 0 T ( ) = + + s p T E z x y cos sin E E 0 0 0 T T 03/20/2017 PHY 712 Spring 2017 -- Lecture 23 3

  4. = = P M Microscopi or vacuum c form ( E 0; 0) : = Coulomb' law s : / 0 E 1 c = B J Ampere - Maxwell' law s : 0 2 t B + = E Faraday' law s : 0 t = B magnetic No monopoles : 0 1 = 2 c 0 0 03/20/2017 PHY 712 Spring 2017 -- Lecture 23 4

  5. Formulation of Maxwells equations in terms of vector and scalar potentials = = B B A 0 B A + = + = E E 0 0 t t A + = E t A = E or t 03/20/2017 PHY 712 Spring 2017 -- Lecture 23 5

  6. Formulation of Maxwells equations in terms of vector and scalar potentials -- continued 1 c + = A require - - form gauge Lorentz : 0 L L 2 t 2 1 c + = 2 / L 0 L 2 2 t A 2 1 c + = 2 A J L 0 L 2 2 t General equation form : 2 1 c = 2 4 f 2 2 t 03/20/2017 PHY 712 Spring 2017 -- Lecture 23 6

  7. Solution of Maxwells equations in the Lorentz gauge -- continued 1 ( ( ) ) ( ) = r ' , ' r r / ' r , ; ' G t t t t c r r ' ( ) + r Solution for t field = , : t ( ) ( ) r r , , t = 0 f 1 1 c ( ) 3 r r ' , ' r ' ' ' ' d r dt t t f t r r ' 03/20/2017 PHY 712 Spring 2017 -- Lecture 23 7

  8. Electromagnetic waves from time harmonic sources ( ( continuity that the Note r J t t ( ( ) ) ) ) ( ( ) ) ~ i = t r r Charge density : , , t e ~ J i = t J r r Current density : , , t e condition : ( ) r , t ~ J ( ) ( ) ( ) ~ + = i + = r r , 0 , , 0 ( ) ~ f ( ( ) ( ) i = , t r r General source : , f t e ~ f 1 ) ( ) ~ , = , r r For 4 0 ~ f ~ J ( ) ( ) , = , r r 0 or i 4 03/20/2017 PHY 712 Spring 2017 -- Lecture 23 8

  9. Electromagnetic waves from time harmonic sources continued: ( ) ( ) = + r r , , t t = 0 f 1 1 c ( ) 3 r r ' , ' r ' ' ' ' d r dt t t f t r r ' ~ ~ ( ) ( ) = + i t i t r r , , e e = 0 f ~ f 1 1 c ( ) 3 ' i t r r , ' r ' ' ' ' d r dt t t e r r ' r r ' i ~ f e ~ ( ) ( ) c = + 3 i t i t r , ' r , ' e d r e = 0 f r r ' 03/20/2017 PHY 712 Spring 2017 -- Lecture 23 9

  10. Electromagnetic waves from time harmonic sources continued: c For scalar potential (Lorentz gauge, ) k r r ' ik 1 e ~ ~ ( ) ( ) ( ) ~ = + 3 r r , ' r , , ' d r 0 r r 4 ' 0 For vector potential (Lorentz c gauge, ) k r r ' ik ~ A ~ A e ~ J ( ) ( ) ( ) = + 3 r r , ' r 0 , , ' d r 0 r r 4 ' 03/20/2017 PHY 712 Spring 2017 -- Lecture 23 10

  11. Electromagnetic waves from time harmonic sources continued: Useful expansion : r r ' ik e ( ) ( h ) ( ) r ( ) ' r = * ik j kr kr Y Y lm l l lm r r 4 ' lm ( ) ( ) kr h l Spherical Bessel function : j kr l ( ) kr ( ) kr = + Spherical Hankel function : j in l l , r ~ 0 ) ~ ~ ( ) ( ( ) ( ) lm Y lm = + r r , , r lm ~ ik ( ) ( ) ( j ) ( h ) ( ) ' r ~ = 3 * , ' r , ' r d r kr kr Y lm lm l l 0 03/20/2017 PHY 712 Spring 2017 -- Lecture 23 11

  12. Electromagnetic waves from time harmonic sources continued: Useful expansion : r r ' ik e ( ) ( h ) ( ) r ( ) ' r = * ik j kr kr Y Y lm l l lm r r 4 ' lm ( ) ( ) kr h l Spherical Bessel function : j kr l ( ) kr ( ) kr = + Spherical Hankel function : j in l l ~ A ) , r ( 0 A ) + ~ ( ( ) ( ) lm Y ~ a lm = r r , , r lm ~ J ( ) ( ) ( j ) ( h ) ( ) ' r ~ a = 3 * , ' r , ' r ik d r kr kr Y lm 0 lm l l 03/20/2017 PHY 712 Spring 2017 -- Lecture 23 12

  13. Forms of spherical Bessel and Hankel functions: ( ) x cos sin ix sin x e ( ) x ( ) x = = j h 0 0 ix + 1 ( ) x 2 ( ) x ix x i e ( ) x ( ) x = = j h 1 1 x 3 x x ( ) x ix 1 3 cos 3 3 i e ( ) x ( ) x ( ) x = = + sin 1 j h i 2 2 3 2 2 x x x x x x Assymptoti behavior c : ( ) l 2 l x + ( ) x 1 x j ( ) ! ! l 1 ix e ( ) ( ) x + 1 l 1 x h i l x 03/20/2017 PHY 712 Spring 2017 -- Lecture 23 13

  14. Electromagnetic waves from time harmonic sources continued: ( ) ( ) , , 0 lm ik r ( ) ( ) , , 0 lm r d ik r ~ l lm d kr h r ~ ~ ~ ( ) ( ) lm Y = + r r r , r lm ~ ( ) ( ) ( j ( lm ) ( h ) ( ) lm Y ) ( ) ' r ~ = 3 * , ' r , ' d r kr kr Y lm lm ~ A l l 0 ~ A ~ a = + r r r , r ~ J ( ) ( ) ( j ) ( h ) ( ) ' r ~ a = 3 * , ' r , ' kr kr Y lm 0 lm l l For (extent ik of source) r ) ( ( ) ( ) ( j ) ( ) ' r ~ 3 * , ' r , ' ' r kr Y lm l 0 ~ J ( ) ( ) kr ( ) ( j ) ( ) ' r ~ a 3 * , ' r , ' ' r ik h d r kr Y lm 0 lm l l 03/20/2017 PHY 712 Spring 2017 -- Lecture 23 14

  15. Electromagnetic waves from time harmonic sources continued: ~ 3 l lm d kr h r For (extent ik of source) r ( ) ( ) ( ) ( j ) ( ) ' r ~ * , ' r , ' ' r kr Y lm l 0 ~ J ( ) ( ) kr ( ) ( j ) ( ) ' r ~ a ~ J 3 * , ' r , ' ' r ik h d r kr Y lm 0 lm l l ( ) ( ) ~ ~ , ' r , ' r Note that and connected are via the ~ J ( ) ( ) + = r r continuity condition ik : , , 0 i ~ ( ) ( ) kr ( ) ( j ) ( ) ' r ~ 3 * , ' r , ' ' r h d r kr Y lm lm l l 0 ( ) k ~ J ( ) kr ( ) ( ) ( ) ' r = 3 * , ' r ' ' ' h d r j kr Y lm l l 0 03/20/2017 PHY 712 Spring 2017 -- Lecture 23 15

  16. Electromagnetic waves from time harmonic sources continued: ions approximat Various : ikr e ( ) ( ) kr + 1 l 1 kr h i l kr ( ) 1 l ' kr ( ) ' 1 ' kr j kr ( ) ! ! l + 2 l Lowest (non - trivial) contributi ons in expansions : l ikr ' ~ ik e kr ( ) ( ) ( ) ' r ~ 3 * , ' r , ' r d r Y 1 m 1 m 3 kr 0 ikr e ~ J ( ) ( ) ( ) ( ) ' r ~ a 3 * , ' r , ' r ik i d r Y 00 00 0 kr 03/20/2017 PHY 712 Spring 2017 -- Lecture 23 16

  17. Electromagnetic waves from time harmonic sources continued: Lowest order contributi dipole on; radiation : Define dipole moment frequency at : 1 ~ J ( ) ( ) ( ) ~ = 3 3 p r r r , , d r d r i ikr ~ A i e ( ) ( ) = r p 0 , 4 r ikr + 1 i i e ~ ( ) ( ) = r r p , 4 kr r 0 Note: in this case we have assumed a restricted extent of the source such that kr <<1. 03/20/2017 PHY 712 Spring 2017 -- Lecture 23 17

  18. Electromagnetic waves from time harmonic sources continued: ( ) ( ) ( 1 p r r ~ A ~ E ~ ) = + r r r , , , i ( ( ) r ) ( )( ikr 3 r r p p e ( ( ( ) ) ) ) = + 2 r 1 k ikr 2 4 0 ~ A ~ B ( ) ( ) = r r , , ikr 1 1 e ( ( ) ) = 2 r p 1 k 2 4 c r ikr 0 Power radiated for : 1 kr ( ) 2 r dP r ~ E ~ B ( ) ( ) = = 2 * r r S r r , , r 2 avg d 0 2 4 c k ( ( ) ) 2 = r r p 0 2 32 0 03/20/2017 PHY 712 Spring 2017 -- Lecture 23 18

  19. Example of dipole radiation source ( ) e J 0 , = z r J J ~ ( ) ~ = / / r R r R r 0 , cos e i R ~ A ( ) ( ) ( ) ( 0 j ) = 2 / ' r R r z , ' ' J ik r dr e h kr kr 0 0 0 0 J k ~ ( ) ( ) ( 1 j ) = 2 / ' r R r 0 , cos ' ' r dr e h kr kr 1 for R 0 0 R Evaluation : r 3 ikr 2 ~ A e R ( ) = r z , J ( ikr ) 0 0 2 r + 2 2 1 k R 3 + 2 J k e i R ~ ( ) = r 0 , cos 1 ( 1 ) 2 r kr + 2 2 k R 0 03/20/2017 PHY 712 Spring 2017 -- Lecture 23 19

  20. Example of dipole radiation source -- continued R r : for Evaluation 3 ikr 2 ~ A e R ( ) = r z , J ( ikr ) 0 0 2 r + 2 2 1 k R 3 + 2 J k e i R ~ ( ) = r 0 , cos 1 ( 1 ) 2 r kr + 2 2 k R 0 Relationship to pure dipole approximation (exact when kR 0) ( ) ( ) i 3 8 1 R J ~ J ( ) ~ = = 3 3 p r r r z 0 , , d r d r i ikr ~ A i e ( ) ( ) = r p 0 Correspond dipole ing fields : , 4 r ikr + 1 i i e ~ ( ) ( ) = r r p , 4 kr r 0 03/20/2017 PHY 712 Spring 2017 -- Lecture 23 20

Related


More Related Content