
Understanding Special Theory of Relativity in Quantum Mechanics
Delve into the concepts of the Dirac equation, energy-momentum relationships, and the application of special relativity in quantum mechanics. Explore Lorentz transformations, 4-vectors, and the velocity Lorentz transformation, enhancing your understanding of this fascinating field.
Download Presentation

Please find below an Image/Link to download the presentation.
The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.
You are allowed to download the files provided on this website for personal or commercial use, subject to the condition that they are used lawfully. All files are the property of their respective owners.
The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.
E N D
Presentation Transcript
PHY 741 Quantum Mechanics 12-12:50 AM MWF Olin 103 Plan for Lecture 32: Chap. 20 in Shankar: The Dirac equation 1. Some simple concepts of special theory of relativity 2. Energy and momentum relationships 3. Dirac equation for a free particle 11/17/2017 PHY 741 Fall 2017 -- Lecture 32 1
11/17/2017 PHY 741 Fall 2017 -- Lecture 32 2
Notions of special relativity The basic laws of physics are the same in all frames of reference (at rest or moving at constant velocity). The speed of light in vacuum c is the same in all frames of reference. y y v x x y x y x 11/17/2017 PHY 741 Fall 2017 -- Lecture 32 3
Convenient v notation : Lorentz transformations c 1 2 1 Stationary frame Moving ct + frame y y ( x ) = + ' ' ct x ( ' ) = x ' ' ct v = y y x = ' z z x y x y x 11/17/2017 PHY 741 Fall 2017 -- Lecture 32 4
1 v c Lorentz transformations -- continued 2 1 = v : v x For the moving frame with 0 0 0 0 0 0 0 0 = = 1 - L L 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 ' ' ct ct ct ct ' ' x x x x = = 1 - L L ' ' y y y y ' ' z z z z Notice : = 2 2 2 2 2 2 2 2 2 2 ' ' ' ' c t x y z c t x y z 11/17/2017 PHY 741 Fall 2017 -- Lecture 32 5
Examples of other 4-vectors applicable to the Lorentz transformation: = v : v x 1 For the moving frame with v c 2 1 0 0 0 0 0 0 0 0 = = 1 - L L 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 / / ' k / ' k / c c c c ' ' k k x x x x = = = 1 - L L k r k r Note : ' ' t ' ' t ' ' k k k k y y y y ' ' k k k k z z z z ' ' E E E E ' ' p c p c p c p c x x x x = = = 1 2 2 2 2 2 2 - L L Note : ' ' E p c E p c ' ' p c p c p c p c y y y y ' ' p c p c p c p c z z z z 11/17/2017 PHY 741 Fall 2017 -- Lecture 32 6
Lorentz transformation of the velocity Stationary frame Moving ct + frame ( x ) = + ' ' ct x ( ' ) = x ' ' ct = y y = ' z z For an infinitesimal increment: frame Stationary Moving frame ( ) = + ' ' cdt cdt dx ( ) = + dx dx' cdt' = dy dy' = dz dz' 11/17/2017 PHY 741 Fall 2017 -- Lecture 32 7
Lorentz transformation of the velocity -- continued frame Stationary Moving frame ( ) = + ' ' cdt cdt dx ( ) = + dx dx' cdt' = dy dy' = dz dx dz' dy dz Define : u u u x y z dt dt dt ' ' ' dx dy dz ( ( dt ' ' ' u u u x y z ' ' ' dt dt v / dt ) ) + ' + ' u dx dx' cdt' / ' = = = x u x + ' + 2 1 dt dx c vu c x ' u ' dy dy + ' y = = = u ( 1 ) ( ) y + 2 / ' ' / dt dt dx c vu c x 11/17/2017 PHY 741 Fall 2017 -- Lecture 32 8
+ ' u + v = u Example of velocity variation with x x x 1 / u c ux/c ' u + y u = u ( ) x y 1 / c uy/c 1 = 2 1 11/17/2017 PHY 741 Fall 2017 -- Lecture 32 9
Velocity transformations continued: ' Consider: 1 ' / x vu + ' u vu + + ' u v u vu y = = = . x z u u u ( ) ( ) x y z 2 + 2 2 c 1 ' / x 1 ' / x c c v v + 2 1 ' / x 1 vu c ( ) = = + 2 Note that 1 ' / x vu c ' u v u ( ) ( ) ( ) 2 2 2 1 / 1 '/ 1 / u c u c v c ( ) = = = = + ' c c v u u v + ' ' u v u u ' y x ( u ) ( ) = + v u c ' ' u u ' c u u u ' ' ' ' u x v u x u v u u x u u ' ' u y u u z u z c ' u u u u u ' ' ' ' u x u x = L Velocity 4-vector: u ' u y u y PHY 741 Fall 2017 -- Lecture 32 ' u z u z 11/17/2017 10
Some details: 2 2 2 2 ' u c v v c u c u c ( ) = + = + 2 1 ' / x 1 1 1 1 x vu c ' u v u 2 2 2 2 ' u vu + + ' ' u v u vu y = = = where . x z u u u ( ) ( ) x y z + 2 + 1 ' / x 2 2 vu c 1 ' / x 1 ' / x c c v v 2 u c 2 2 y 2 y ' u c u c 2 x 2 z 2 z 2 ' ' u c u c v u u c v c u c v c + + + = + + + 1 1 x x 2 2 2 2 2 2 2 c 2 2 2 2 2 2 ' u c v u c v u c v c v c + = + + 1 1 1 1 x x 2 2 2 2 2 2 2 2 2 2 ' u c v u c u c v c + = 1 1 1 1 x 2 2 2 2 11/17/2017 PHY 741 Fall 2017 -- Lecture 32 11
c u u Significance of 4-velocity vector: u x u u y u u z Introduce the rest mass m of particle characterized by velocity u: 2 c E mc u u u p c mu c u x x = = u x mc u p c mu c u y y u y u p c mu c u z z u z Properties of energy-moment 4-vector: ' ' E E E E ' ' p c p c p c p c x x x x = = = 1 2 2 2 2 2 2 - L L Note : ' ' E p c E p c ' ' p c p c p c p c y y y y ' ' p c p c p c p c z z z z 11/17/2017 PHY 741 Fall 2017 -- Lecture 32 12
Properties of Energy-momentum 4-vector -- continued = c mu y u 2 E mc u p c mu c x u x p c y p c mu c z u z ( 1 ) 2 2 2 2 u ( ) 2 u mc u 2 0, y = = = 2 2 2 2 2 2 2 Note : 1 ' ' x z E p c mc E p c 2 c c c E u = 2 p Notion of "rest energy": For mc = + 2 2 2 2 4 2 Define kinetic energy: E E mc p c m c mc K 2 p p = + 2 Non-relativistic limit: If 1, 1 1 E mc K mc mc 2 p 2 m 11/17/2017 PHY 741 Fall 2017 -- Lecture 32 13
Summary of relativistic energy relationships = c mu c p z u z 2 E mc u p c mu c x u x p c mu c y u y = + = 2 2 2 4 2 E p c m c mc u 2 2 + = + = 2 2 2 4 2 2 Check : 1 p c m c mc mc u u u = 2 Example electron an for : c E 5 . 0 MeV m = for 200 GeV E = = 5 4 10 u 2 mc 1 1 12 = 1 1 1 3 10 u 2 2 2 u u 11/17/2017 PHY 741 Fall 2017 -- Lecture 32 14
How do these relationships effect quantum mechanics? Focusing on treatment of Fermi particles Relativistic mechanics Non-relativistic mechanics 2 p ( ) 2 E = = 2 2 2 c 2 p E mc 2 m (with some licens e) = ) ( = ) 2 ( )( p + p 2 E c E c mc i H t p + p i c i c t t ( ) 2 = 2 mc 11/17/2017 PHY 741 Fall 2017 -- Lecture 32 15
Relativistic relationships continued Ref: J. J. Sakurai, Advanced Quantum Mechanics ( ) 2 p + p = 2 i c i c mc t t + p 2 R L Let i c mc t Factored equations: + = 2 L R p i c mc t = 2 R L p i c mc t 11/17/2017 PHY 741 Fall 2017 -- Lecture 32 16
Relativistic relationships continued Ref: J. J. Sakurai, Advanced Quantum Mechanics Factored equations: + = = 2 L R p i c mc t 2 R L p i c mc t = = + U R L Dirac's rearrangement: L R L U U p i c t = 2 m c p c i L L t 11/17/2017 PHY 741 Fall 2017 -- Lecture 32 17
Relativistic relationships continued U U p i c t = 2 mc p c i L L t Further rearrangements: 2 U U p mc p c = i 2 L L t c mc = i H t 11/17/2017 PHY 741 Fall 2017 -- Lecture 32 18
Four component wavefunction of free Fermi particle 2 U mc i = = = + = k U p c = 2 L L t p c mc U U k ( ) ( ) k k r / i iEt Assume e L L k c U L ( ) k k ( ) 2 E k mc c mc L U ( ) k ( ) k 2 E + 2 2 2 c 2 2 4 c E m = + 2 2 c 2 2 4 k E m c 11/17/2017 PHY 741 Fall 2017 -- Lecture 32 19
0 1 1 0 0 i 1 0 0 i = = = Pauli matrices: x y z 0 1 k + k ik z x y = k k ik k k x y z c c c c k = = U L L U ( ) k ( ) k ( ) k ( ) k + 2 2 E m E m = + 2 2 c 2 2 4 c k c + k Positive energy solutions: 1 ( ) 0 = E m z z = = U L N N k ( ) k z 2 E mc k m + + c 0 1 2 E c = U L N N ( ) k ( ) k z 11/17/2017 PHY 741 Fall 2017 -- Lecture 32 20
0 1 1 0 0 i 1 0 0 i = = = Pauli matrices: x y z 0 1 k + k k ik z x y = k k ik k x y z c c k = = U L L U ( ) k ( ) k ( ) k ( ) k + 2 2 E mc E mc = + 2 2 c 2 2 4 c k Negative energy solutions: E m k c 1 0 z z = = U L N N ( ) k ( ) k z 2 E mc k m + c 0 1 2 E c = = U L N N ( ) k ( ) k z 11/17/2017 PHY 741 Fall 2017 -- Lecture 32 21
What does this all mean? Positive energy solutions: = = = + 2 2 c 2 2 4 k E m c 1 0 k c + z = U L N N ( ) k ( ) k z z 2 E mc k m + + c 0 1 = U L N N ( ) k ( ) k 2 E c z 2 2 k + 2 2 k For c m c E mc 2 m 1 0 0 0 = U L N N ( ) k ( ) k 0 1 0 0 = U L N N ( ) k ( ) k 11/17/2017 PHY 741 Fall 2017 -- Lecture 32 22