
Impact of Chemical Composition on Electrochemical Biosensors
Explore the impact of chemical composition on electrochemical biosensors through studies on soybean oil, vanillin-based polymers, and nanozyme technology. Discover advancements in creating amperometric biosensors for various analytes like creatinine. Dive into the world of polymer matrices and electronic materials, with a focus on improving properties through computer modeling. Stay updated on the latest research in biosensors and biopolymers, shedding light on the process of photopolymerization and free volume diffusion properties.
Download Presentation

Please find below an Image/Link to download the presentation.
The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.
You are allowed to download the files provided on this website for personal or commercial use, subject to the condition that they are used lawfully. All files are the property of their respective owners.
The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.
E N D
Presentation Transcript
6 ( ) - , 2023 - : : : 0121U109539 - : ( . . ) : : 1206,9 . : 01.01.2021 . 31.12.2023 .
, : , , . : 1) - , ; 2) ( , , ) .
: , (ELO), (RD1), (VDM), (DMPA). (ELO/PI, ELO/10RD1/PI) (AESO/VDM, AESO/VDM/DMPA) . , 10 .% RD1 AESO. (PALS) (120-320 K) . . ( ). , , . (AESO), (PI) 2,2- -2- ELO. VDM
: / AESO:VDM=1:1 ( ) . / . , , , AESO/VDM . , . : . / : ( 15.12.2021 ., 26.12.2022 ., 22.12.2023 .).
- : : 1. T. Kavetskyy, O. Smutok, M. Go dziuk-Gontarz, B. Zgardzi ska, Y. Kukhazh, K. Zubrytska, N. Hoivanovych, O. au a, O. Demkiv, N. Stasyuk, M. Gonchar, J. Ostrauskaite, A. Kiv, E. Katz. Impact of chemical composition of soybean oil and vanillin-based photocross-linked polymers on parameters of electrochemical biosensors // Microchem. J., 2024, V.201, P.110618(1-7). (IF = 4.8, Scopus, WoS, Q1), https://doi.org/10.1016/j.microc.2024.110618 2. T. Prokopiv, N. Stasyuk, M. Gonchar. Nanozyme can substitute the natural Ogataea polymorpha catalase enzyme in vivo // Microchim. Acta, 2023, V.190, P.174. (IF = 5.7, Scopus, WoS, Q1), https://doi.org/10.1007/s00604-023-05753-8 3. O. Demkiv, G. Gayda, N. Stasyuk, A. Moroz, R. Serkiz, A. Kausaite-Minkstimiene, M. Gonchar, M. Nisnevitch. Flavocytochrome b2-mediated electroactive nanoparticles for developing amperometric L-lactate biosensors // Biosensors, 2023, V.13, P.587. (IF = 5.743, Scopus, WoS, Q1; Open Access), https://doi.org/10.3390/bios13060587 4. N. Stasyuk, A. Zakalskiy, W. Nogala, S. Gawinkowski, T. Ratajczyk, M. Bonarowska, O. Demkiv, O. Zakalska, M. Gonchar. A reagentless amperometric biosensor for creatinine assay based on recombinant creatinine deiminase and N-methylhydantoin-sensitive CoCu nanocomposite // Sensors and Actuators B: Chemical, 2023, V.393, P.34276. (IF = 9.221, Scopus, WoS, Q1), https://doi.org/10.1016/j.snb.2023.134276
5. Y.V. Bondaruk, T.S. Kavetskyy, A.O. Vinkovskaya, M. Kushniyazova, D.O. Dyachok, L.I. Pankiv, H.M. Klepach, O.R. Mushynska, O.V. Zubrytska, O.I. Matskiv, Y.V. Pavlovskyy, S.Y. Voloshanska, S.S. Monastyrska, L.V. Bodnar, A.E. Kiv. Improvement of new electronic materials using computer modeling // Semicond. Phys. Quant. Electron. Optoelectron., 2023, V.26, #4, P.470-474. (Scopus, WoS, Q3; Open Access), https://doi.org/10.15407/spqeo26.04.470 6. D.P. Kr lovi , K. Cifrani ov , H. vajdlenkov , D. T thov , O. au a, P. Kalinay, T. Kavetskyy, J. Ostrauskaite, O. Smutok, M. Gonchar, V. Soloviev, A. Kiv. Effect of aromatic rings in AESO-VDM biopolymers on the local free volume and diffusion properties of polymer matrix // J. Polym. Environ., 2023. (IF = 5.3, Scopus, WoS, Q1; Open Access), https://doi.org/10.1007/s10924-023-03097-1 7. D.P. Kr lovi , K. Cifrani ov , O. au a, H. vajdlenkov , T. Kavetskyy, A. Kiv. The process of photopolymerization of acrylated soybean oil-based epoxides investigated by positron annihilation lifetime spectroscopy // Chemical Papers, 2023, V.77, P.7257-7261. (IF = 2.146, Scopus, WoS, Q2), https://doi.org/10.1007/s11696-022-02607-0 8. A. Kiv, A. Bryukhanov, A. Bielinskyi, V. Soloviev, T. Kavetskyy, D. Dyachok, I. Donchev, V. Lukashin. Irreversibility of plastic deformation processes in metals // Lecture Notes on Data Engineering and Communications Technologies, 2023, V.178, P.425-445. (Scopus, WoS), https://doi.org/10.1007/978-3-031-35467-0_26
9. R.Ya. Leshko, I.V. Bilynskyi, O.V. Leshko, M.A. Slusarenko. Electron energy spectrum of the non-concentric spherical core-shell quantum dot // Micro and Nanostructures, 2023, V.181, P.207615. (Scopus, WoS, Q3), https://doi.org/10.1016/j.micrna.2023.207615 10. R.Ya. Leshko, I.V. Bilynskyi, O.V. Leshko, V.B. Hols'kyi. Electron energy spectrum of the spherical GaAs/AlxGa1-xAs quantum dot with several impurities on the surface // Condensed Matter Physics, 2023, V.26, No.2, P.24704. (Scopus, WoS, Q4; Open Access), https://doi.org/10.5488/CMP.26.23704 11. I. Bilynskyi, R. Leshko, H. Bandura. Electron and hole spectrum taking into account deformation and polarization in the quantum dot heterostructure InAs/GaAs // Phys. Chem. Solid St., 2023, V.24, No.1, P.146-152. (Scopus, WoS, Q4; Open Access), https://doi.org/10.15330/pcss.24.1.146-152 12. I.V. Bilynskyi, R.Y. Leshko, H.O. Metsan, M.A. Slusarenko. Effect of electric field and acceptor position on the energy spectrum of GaAs/AlAs quantum dot // Physica B Condens. Matter, 2022, V.642, P.414106. (IF = 2.88, Scopus, WoS, Q2), https://doi.org/10.1016/j.physb.2022.414106 13. V.B. Hols'kyi, R.Ya. Leshko. The influence of deformations on single electron states in a molecule formed from three quantum dots of the heterosystem InAs/GaAs // Phys. Chem. Solid St., 2022, V.23, No.4, P.686-692. (Scopus, WoS, Q4; Open Access), https://doi.org/10.15330/pcss.23.4.686-692
14. I.I. Donchev, T.S. Kavetskyy, O.R. Mushynska, O.V. Zubrytska, I.V. Briukhovetska, A.M. Pryima, H.Y. Kovalchuk, N.K. Hoivanovych, L.M. Kropyvnytska, Y.Y. Pavlyshak, T.B. Skrobach, G.M. Kossak, V.I. Stakhiv, S.S. Monastyrska, .E. Kiv. Computer model of track biosensor // Semicond. Phys. Quant. Electron. Optoelectron., 2022, V.25, No.4, P.441-445. (Scopus, WoS, Q3; Open Access), https://doi.org/10.15407/spqeo25.04.441 15. R.Ya. Leshko, I.V. Bilynskyi, O.V. Leshko. Electron-hole exchange interaction in a spherical quantum dot with regard material deformation and polarization charges // J. Phys. Stud., 2022, V.26(1), P.1702. (IF = 0.389, Scopus, WoS, Q4; Open Access), https://doi.org/10.30970/jps.26.1702 16. N. Stasyuk, O. Demkiv, G. Gayda, A. Zakalskiy, H. Klepach, N. Bisko, M. Gonchar, M. Nisnevitch. Highly porous 3D gold enhances sensitivity of amperometric biosensors based on oxidases and CuCe nanoparticles // Biosensors, 2022, V.12, P.472. (IF = 5.743, Scopus, WoS, Q2; Open Access), https://doi.org/10.3390/bios12070472 17. N. Stasyuk, G. Gayda, T. Kavetskyy, M. Gonchar. Nanozymes with reductase-like activities: antioxidant properties and electrochemical behavior // RSC Adv., 2022, V.12(4), P.2026-2035. (IF = 3.361, Scopus, WoS, Q1; Open Access), https://doi.org/10.1039/d1ra08127f
18. N. Stasyuk, O. Demkiv, G. Gayda, R. Serkiz, A. Zakalskiy, O. Zakalska, H. Klepach, G. Al- Maali, N. Bisko, M. Gonchar. Highly Sensitive Amperometric Biosensors Based on Oxidases and CuCe Nanoparticles Coupled with Porous Gold // Eng. Proc., 2022, V. 16(1), P.1-8. (Scopus, WoS; Open Access), https://doi.org/10.3390/IECB2022-12251 19. N.Ye. Stasyuk, G.Z. Gayda, A.E. Zakalskiy, L.R. Fayura, O.M. Zakalska, . . Sibirny, M. Nisnevitch, M.V. Gonchar. Amperometric biosensors for L-arginine and creatinine assay based on recombinant deiminases and ammonium-sensitive Cu/Zn(Hg)S nanoparticles // Talanta, 2022, V. 238(1), P. 122996. (IF = 6.556, Scopus, WoS, Q1), https://doi.org/10.1016/j.talanta.2021.122996 20. G. Gayda, N. Stasyuk, A. Zakalskiy, M. Gonchar, E. Katz. Arginine-hydrolyzing enzymes for electrochemical biosensors // Current Opin. Electrochem., 2022, V. 33, P. 100941. (IF = 6.82, Scopus, WoS, Q1), https://doi.org/10.1016/j.coelec.2022.100941 21. O. Demkiv, G. Gayda, N. Stasyuk, O. Brahinetz, M. Gonchar, M. Nisnevitch. Nanomaterials as redox mediators in laccase-based amperometric biosensors for catechol assay // Biosensors, 2022, V. 12, P. 41. (IF = 5.743, Scopus, WoS, Q2; Open Access), https://doi.org/10.3390/bios12090741 22. N. Stasyuk, O. Demkiv, G. Gayda, O. Zakalska, A. Zakalskiy, R. Serkiz, T. Kavetskyy, M. Gonchar. Reusable alcohol oxidase-nPtCu/alginate beads for highly sensitive ethanol assay in beverages // RSC Adv., 2022, V. 12(33), P. 21309-21317. (IF = 3.361, Scopus, WoS, Q1; Open Access), https://doi.org/10.1039/d2ra02106d
23. T. Kavetskyy, O. Smutok, O. Demkiv, Y. Kukhazh, N. Stasyuk, E. Leonenko, A. Kiv, Y. Kobayashi, A. Kinomura, O. au a, M. Gonchar, E. Katz. Improvement of laccase biosensor characteristics using sulfur-doped TiO2nanoparticles // Bioelectrochemistry, 2022, V.147, P.108215. (IF = 5.760, Scopus, WoS, Q2), https://doi.org/10.1016/j.bioelechem.2022.108215 24. N. Stasyuk, O. Demkiv, G. Gayda, O. Zakalska, M. Gonchar. Amperometric biosensors based on alcohol oxidase and peroxidase-like nanozymes for ethanol determination // Microchim. Acta, 2022, V.189(12), P.474. (IF = 6.408, Scopus, WoS, Q1; Open Access), https://doi.org/10.1007/s00604-022-05568-z 25. M. Go dziuk, T. Kavetskyy, D. Massana Roquero, O. Smutok, M. Gonchar, D.P. Kr lovi , H. vajdlenkov , O. au a, P. Kalinay, H. Nosrati, M. Lebedevaite, S. Grauzeliene, J. Ostrauskaite, A. Kiv, B. Zgardzi ska. UV-cured green polymers for biosensorics: correlation of operational parameters of highly sensitive biosensors with nano-volumes and adsorption properties // Materials, 2022, V.15, P.6607. (IF = 3.623, Scopus, WoS, Q2; Open Access), https://doi.org/10.3390/ma15196607 26. T. Kavetskyy, N. Stebeletska, J. Borc, M. Kravtsiv, K. Graz, O. au a, H. vajdlenkov , A. Kleinov , A. Kiv, O. Tadeush, A.L. Stepanov. Long-range effect in ion-implanted polymers // Vacuum, 2022, V.200, P.111038. (IF = 3.627, Scopus, WoS, Q1), https://doi.org/10.1016/j.vacuum.2022.111038
27. R. Nasiri, B. Gholipour, M. Nourmohammadi, Z. Karimi, S. Doaee, R. Taghavi, S. Rostamnia, E. Zarenezhad, F. Karimi, T. Kavetskyy, O. Smutok, A. Kiv, V. Soloviev, S. Khaksar, A.S. Hamidi. Mesoporous hybrid organosilica for stabilizing Pd nanoparticles and aerobic alcohol oxidation through Pd hydride (Pd-H2) species // Int. J. Hydrog. Energy, 2023, V.48, P.6488-6498. (IF = 7.139, Scopus, WoS, Q1), https://doi.org/10.1016/j.ijhydene.2022.04.242 28. N. Stasyuk, G. Gayda, O. Demkiv, L. Darmohray, M. Gonchar, M. Nisnevitch. Amperometric biosensors for L-arginine determination based on L-arginine oxidase and peroxidase-like nanozymes // Appl. Sci., 2021, V.11, P.7024. (IF = 2.679, Scopus, WoS, Q2; Open Access), https://doi.org/10.3390/app11157024 29. O. Demkiv, N. Stasyuk, R. Serkiz, G. Gayda, M. Nisnevitch, M. Gonchar. Peroxidase-like metal-based nanozymes: synthesis, catalytic properties, and analytical application // Appl. Sci., 2021, V.11, P.777. (IF = 2.679, Scopus, WoS, Q2; Open Access), https://doi.org/10.3390/app11020777 30. T. Kavetskyy, V. Boev, V. Ilcheva, Y. Kukhazh, O. Smutok, L. Pan kiv, O. au a, H. vajdlenkov , D. Tatchev, G. Avdeev, E. Gericke, A. Hoell, S. Rostamnia, T. Petkova. Structural and free volume characterization of sol-gel organic-inorganic hybrids, obtained by co-condensation of two ureasilicate stoichiometric precursors // J. Appl. Polym. Sci., 2021, V.138, P.e50615(1-10). (IF = 2.520, Scopus, WoS, Q1), https://doi.org/10.1002/app.50615
31. I.V. Bilynskyi, R.Y. Leshko, H.Y. Bandura. Influence of quantum dot shape on energy spectra of three-dimensional quantum dots superlattices // Phys. Chem. Solid St., 2021, V.21, #4, P.584-590. (Scopus, WoS; Open Access), https://doi.org/10.15330/pcss.21.4.584-590 32. N. Stasyuk, G. Gayda, O. Demkiv, L. Darmohray, M. Gonchar, M. Nisnevitch. Amperometric biosensors for L-arginine determination based on L-arginine oxidase and peroxidase-like nanozymes // Appl. Sci., 2021, V.11, P.7024. (IF = 2.679, Scopus, WoS, Q2; Open Access), https://doi.org/10.3390/app11157024 33. O. Demkiv, N. Stasyuk, G. Gayda, M. Gonchar. Highly sensitive amperometric sensor based on laccase-mimicking metal-based hybrid nanozymes for adrenaline analysis in pharmaceuticals // Catalysts, 2021, V.11, #12, P.1510. (IF = 4.146, Scopus, WoS, Q2; Open Access), https://doi.org/10.3390/catal11121510 34. D. Fink, J. Vacik, V. Hnatowicz, A. Kiv. Ion track etching revisited. V. Etching of aged pristine and swift heavy ion-irradiated polyimide foils after treatment in hot ambient // Radiation Effects and Defects in Solids, 2021, V.176, #1-2, P.167-187. (IF = 1.14, Scopus, WoS, Q3), https://doi.org/10.1080/10420150.2021.1891066 35. J. Vacik, V. Hnatowicz, A. Kiv, D. Fink. Ion Track Etching Revisited: IV. Thermal annealing of fresh swift heavy ion-irradiated PET in different environments // Radiation Effects and Defects in Solids, 2021, V.176, #1-2, P.17-37. (IF = 1.14, Scopus, WoS, Q3), https://doi.org/10.1080/10420150.2021.1891056
36. T. Kavetskyy, M. Alipour, O. Smutok, O. Mushynska, A. Kiv, D. Fink, F. Farshchi, E. Ahmadian, M. Hasanzadeh. Magneto-immunoassay of cancer biomarkers: Recent progress and challenges in biomedical analysis // Microchem. J., 2021, V.167, P.106320(1-13). (IF = 4.821, Scopus, WoS, Q2), https://doi.org/10.1016/j.microc.2021.106320 37. M. Go dziuk, B. Zgardzi ska, T. Kavetskyy, K. Zubrytska, O. Smutok, O. au a, M. Lebedevaite, J. Ostrauskaite, A. Kiv. Nanostructure research and amperometric testing to determine the detection capabilities of biopolymer matrices based on acrylated epoxidized soybean oil // Acta Phys. Pol., A, 2021, V.139, #4, P.432-437. (IF = 0.857, Scopus, WoS, Q3), https://doi.org/10.12693/APhysPolA.139.432