Proposal for IEEE802.15.3e MAC Aggregation

september 2015 n.w
1 / 17
Embed
Share

This document outlines a comprehensive MAC/PHY proposal for HRCP focusing on aggregation and retransmission techniques. It serves as a non-binding discussion material subject to further modifications. The contributors, representing companies like ETRI, NTT, Sony, and Toshiba, aim to propose a detailed specification for TG 3e within IEEE P802.15. The content includes performance comparisons, HRCP aggregation details, and interface space considerations for retransmission and recovery processes.

  • MAC proposal
  • IEEE802.15.3e
  • HRCP
  • aggregation
  • retransmission

Uploaded on | 0 Views


Download Presentation

Please find below an Image/Link to download the presentation.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author. If you encounter any issues during the download, it is possible that the publisher has removed the file from their server.

You are allowed to download the files provided on this website for personal or commercial use, subject to the condition that they are used lawfully. All files are the property of their respective owners.

The content on the website is provided AS IS for your information and personal use only. It may not be sold, licensed, or shared on other websites without obtaining consent from the author.

E N D

Presentation Transcript


  1. September, 2015 DCN: <15-15-0663-02-003e-proposal-for-ieee802-15-3e-mac-aggregation-retransmission> Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [Proposal for IEEE802.15.3e MAC :Aggregation and Retransmission] Date Submitted: [10 September 2015] Source: [Itaru Maekawa(1), Jae Seung Lee, Ken Hiraga, Makoto Noda, Ko Togashi, (representative contributors), all contributors are listed in Contributors slide] Company: [ETRI, JRC1, NTT, Sony, Toshiba] Address1: [Mitaka, Tokyo, Japan] E-Mail1: [Maekawa.Itaru at jrc.co.jp (all contributors are listed in Contributors slide)] Abstract: This document presents an overview of the full MAC/PHY proposal for HRCP. Purpose: Notice: discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributors acknowledge and accept that this contribution becomes the property of IEEE and may be made publicly available by P802.15. To propose a full set of specifications for TG 3e. This document has been prepared to assist the IEEE P802.15. It is offered as a basis for Submission Itaru Maekawa, et al.

  2. September, 2015 DCN: <15-15-0663-02-003e-proposal-for-ieee802-15-3e-mac-aggregation-retransmission> Contributors Name Affiliation Email Jae Seung Lee ETRI jasonlee at etri.re.kr Moon-Sik Lee ETRI moonsiklee at etri.re.kr Itaru Maekawa Japan Radio Co., Ltd. maekawa.itaru at jrc.co.jp Doohwan Lee NTT Corporation lee.doohwan at lab.ntt.co.jp Ken Hiraga NTT Corporation hiraga.ken at lab.ntt.co.jp Masashi Shimizu NTT Corporation masashi.shimizu at upr-net.co.jp Keitarou Kondou Sony Corporation Keitarou.Kondou at jp.sony.com Hiroyuki Matsumura Sony Corporation Hiroyuki.Matsumura at jp.sony.com Makoto Noda Sony Corporation MakotoB.Noda at jp.sony.com Masashi Shinagawa Sony Corporation Masashi.Shinagawa at jp.sony.com Ko Togashi Toshiba Corporation ko.togashi at toshiba.co.jp Kiyoshi Toshimitsu Toshiba Corporation kiyoshi.toshimitsu at toshiba.co.jp Submission Itaru Maekawa, et al.

  3. September, 2015 DCN: <15-15-0663-02-003e-proposal-for-ieee802-15-3e-mac-aggregation-retransmission> Proposal for IEEE802.15.3e High-Rate Close Proximity System September 15, 2015 Submission Itaru Maekawa, et al.

  4. September, 2015 DCN: <15-15-0663-02-003e-proposal-for-ieee802-15-3e-mac-aggregation-retransmission> Contents 1. Block ACK vs Stack ACK :Performance Comparison (Homework@Wikoloa) 2. HRCP Aggregation 3. Interface space, retransmission with Stack ACK and Recovery Process Submission Itaru Maekawa, et al.

  5. September, 2015 DCN: <15-15-0663-02-003e-proposal-for-ieee802-15-3e-mac-aggregation-retransmission> Block ACK vs Stack ACK :Performance Comparison (Homework@Wikoloa) Slide5 Submission Itaru Maekawa, et al.

  6. September, 2015 DCN: <15-15-0663-02-003e-proposal-for-ieee802-15-3e-mac-aggregation-retransmission> Simple Stack ACK - Key Concept of HRCP MAC - Block ACK Effective way to save & share bandwidth among multiple devices, especially under high error or collision environments, however .This method has the following disadvantages: Higher complexity Small benefit versus cost (complexity) for use cases of HRCP Larger buffer memory Larger potential latency Stack ACK Stacked Coin FIFO Buffer Practical way for HRCP, because Bandwidth saving is not required, thanks to good BER environment Lower Complexity , simple hardware requirements Slide 6 Submission Itaru Maekawa, et al.

  7. September, 2015 DCN: <15-15-0663-02-003e-proposal-for-ieee802-15-3e-mac-aggregation-retransmission> Time Domain MAC Behavior Dev.A Dev.B Sub-F#N+4 Sub-F#N+3 Sub-F#N+2 Sub-F#N+1 ACK#M SIFS SIFS Sub-F#M+4 Sub-F#M+3 Sub-F#M+2 Sub-F#M+1 ACK#N+4 Time #1 Data Error Or Buffer full Dev.A Dev.B Sub-F#N+8 Sub-F#N+7 Sub-F#N+6 Sub-F#N+5 ACK#M+4 SIFS Sub-F#M+8 Sub-F#M+7 Sub-F#M+6 Sub-F#M+5 ACK#N+6 Time #2 Header Error RIFS(A) Dev.A Dev.B ACK#M+8 Sub-F#N+10 Sub-F#N+9 Sub-F#N+8 Sub-F#N+7 ACK#M+8 SIFS SIFS SIFS Sub-F#M+10 Sub-F#M+9 ACK#N+6 ACK#N+6 ACK#N+6 RIFS(B) RIFS(B) Time #3 Dev.A Dev.B ACK#M+10 Sub-F#N+12 Sub-F#N+11 Sub-F#N+10 Sub-F#N+9 Sub-F#N+8 Sub-F#N+7 ACK#M+10 SIFS SIFS SIFS ACK#N+12 Time #4 RIFS(A) RIFS(A) RIFS(A) Sync.lost Dev.A Dev.B ACK#M+12 ACK#M+12 ACK#M+12 ACK#M+12 ACK#N+12 Sub-F#M+14 Sub-F#M+13 Sub-F#M+12 Sub-F#M+11 ACK#N+12 RIFS(B) Time #5 Slide7 Submission Itaru Maekawa, et al.

  8. September, 2015 DCN: <15-15-0663-02-003e-proposal-for-ieee802-15-3e-mac-aggregation-retransmission> Stack Ack: Performance Estimation Model MAC HCS FCS MPDU#N Subheader#N Subframe#N Subframe #N+31 Subframe #N+17 Subframe #N+16 MAC Header PHY Header Subframe #N+15 Subframe #N+1 Subframe #N MAC Header PHY Header HCS HCS SIFS SIFS SIFS Tperiod MAC Header PHY Header MAC Header PHY Header HCS HCS Time Parameters : Example unit 2usec 132bit 0.88Gbps 2.15usec :(BER:bit error rate) PHY Preamble PHY-header+MAC-header +HCS 1760M BPSK, 1/2 ECC. Tpr Lhd Rhead Thd FER=1-(1-BER)Lmpd N - Simplified Estimation Model -When Frame Error is occurred with probability of FER, 50% of Sub-Frames (Average) are retransmitted. 16QAM wo pilot, 14/15 LDPC Rphy Tsifs 6.57Gbps 2usec -MAC Throughput (MACtp) vs FER is calculated as below. mpdu Length Sub-Header+HCS+FCS Aggregation Number Lmpd Lsh N 4kB 11B 16 + / 1 2 1 ( ) FER Lmpd N FER Lmpd N = MACtp Tperiod Tperiod 86.44429usec Tperiod Slide 8 Submission Itaru Maekawa, et al.

  9. September, 2015 DCN: <15-15-0663-02-003e-proposal-for-ieee802-15-3e-mac-aggregation-retransmission> Block-Ack :Performance Estimation Model MAC HCS FCS MPDU#N Subheader#N Subframe#N Subframe #X MAC Header PHY Header Subframe #N+15 Subframe #N+1 Subframe #N MAC Header PHY Header HCS HCS SIFS SIFS SIFS SIFS Tretry Tperiod MAC Header PHY Header MAC Header PHY Header HCS HCS Time Parameters : Example unit 2usec 132bit 0.88Gbps 2.15usec :(BER:bit error rate) PHY Preamble PHY-header+MAC-header +HCS 1760M BPSK, 1/2 ECC. Tpr Lhd Rhead Thd FER=1-(1-BER)Lmpd N - Simplified Estimation Model -When Frame Error is occurred with probability of FER, ONE Sub-Frames are retransmitted. 16QAM wo pilot, 14/15 LDPC Rphy Tsifs 6.57Gbps 2usec -MAC Throughput (MACtp) vs FER is calculated as below. mpdu Length Sub-Header+HCS+FCS Aggregation Number Lmpd Lsh N 4kB 11B 16 Lmpd + ) N = MACtp + 1 ( Tperiod ( ) Tperiod FER Tretry FER Tperiod Tperiod 86.44429usec Slide 9 Submission Itaru Maekawa, et al.

  10. September, 2015 DCN: <15-15-0663-02-003e-proposal-for-ieee802-15-3e-mac-aggregation-retransmission> Stack ACK vs Block-ACK :Throughput Comparison Common Parameters : unit 2usec 132bit 0.88Gbps 2usec 11B 4kB -As long as FER is less than 10% order, throughput advantage of Block ACK is negligible . -(If FER exceed 10% level, Rate adaptation System should work.) PHY Preamble PHY-header+MAC-header +HCS 1760M BPSK, 1/2 ECC. Tpr Lhd Rhead Tsifs Lsh Lmpd Sub-Header+HCS+FCS mpdu Length PHY Rate :6.57Gbps (16QAM, LDPC 14/15 ) Number of Aggregation:16 PHY Rate :52.6Gbps (16QAM x8 MIMO, LDPC 14/15 ) Number of Aggregation:128 FER 4% 100 100 FER 5% Performance Degradation(%) Performance Degradation(%) 99 99 98 98 Stack ACK Stack ACK 97 97 Block ACK Block ACK 96 96 95 1.00E-05 95 1.00E-05 1.00E-11 1.00E-09 1.00E-07 1.00E-11 1.00E-09 1.00E-07 BER BER -Conclusion -Low Complexity Advantage of Stack ACK retransmission is significant -Performance Disadvantage of Stack ACK is negligible Slide 10 Submission Itaru Maekawa, et al.

  11. September, 2015 DCN: <15-15-0663-02-003e-proposal-for-ieee802-15-3e-mac-aggregation-retransmission> HRCP Aggregation Slide11 Submission Itaru Maekawa, et al.

  12. September, 2015 DCN: <15-15-0663-02-003e-proposal-for-ieee802-15-3e-mac-aggregation-retransmission> HRCP Aggregation 4kB is tentative number. MSDU Typ.length Ether Frame :46 1518B MTP/OBEX:64kB MSDU#2 MSDU#1 MSDU#3 Fragmentation Fragmentation MPDU:MAC Protocol Data Unit MPDU Max length= single block size of TX Buffer 4kB (fixed value) MPDU#4 Fragment #1 MPDU#3 Fragment #2 MPDU#2 Fragment #1 MPDU#5 Fragment #2 MAC Header MPDU#1 More Fragment= 0 MAC Subheader#1 Stacked Coin FIFO Buffer HCS FCS MPDU#1 More Fragment is set to 1 to indicate the corresponding subframe is not a final frame of fragmentation. Subframe#1 More Fragment = 1 MAC Subheader#2 HCS FCS MPDU#2 Subframe#2 More Fragment = 0 HCS MAC FCS MPDU#3 Subheader#3 Subframe#3 Sequence# and MPDU length are shown in Sub Header More Fragment = 1 HCS MAC FCS MPDU#4 Subheader#4 Number of subframes and Ack Information are shown in MAC Header Subframe#4 N:255 maximum Subframe# 4 Subframe# 3 Subframe# 2 Subframe# 1 MAC Header HCS Subframe#N PHY Header Slide 12 Submission Itaru Maekawa, et al.

  13. September, 2015 DCN: <15-15-0663-02-003e-proposal-for-ieee802-15-3e-mac-aggregation-retransmission> HRCP deaggregation MSDU#3 MSDU#2 MSDU#1 Defragmentation Defragmentation MPDU#5 (Fragment#2) MPDU#4 (Fragment#1) MPDU#3 (Fragment#2) MPDU#2 (Fragment#1) MPDU#1 MAC Header More fragment=0 MAC HCS FCS MPDU#1 Subheader#1 More fragment flag is set to 1 to indicate the corresponding subframe is not a final frame of fragmentation. Subframe#1 More fragment=1 MAC HCS FCS MPDU#2 Subheader#2 Subframe#2 More fragment=0 MAC HCS FCS MPDU#3 MPDU# and MPDU length are shown in Sub Header Subheader#3 Subframe#3 More fragment=1 MAC Number of subframes and Ack information are shown in MAC Header HCS FCS MPDU#4 Subheader#4 Subframe#4 Subframe# n m+n Subframe# 4 Subframe# 3 Subframe# 2 Subframe# 1 HCS MAC Header PHY Header m+4 m+3 m+2 m+1 Sequence Number Slide13 Submission Itaru Maekawa, et al.

  14. September, 2015 DCN: <15-15-0663-02-003e-proposal-for-ieee802-15-3e-mac-aggregation-retransmission> Interface space, retransmission with Stack ACK and Recovery Process Slide14 Submission Itaru Maekawa, et al.

  15. September, 2015 DCN: <15-15-0663-02-003e-proposal-for-ieee802-15-3e-mac-aggregation-retransmission> One cycle of PPAP Unassociated Associated Unassociated Asynchronous Phase Synchronous Phase (with SIFS) Asynchronous Phase (with RIFS) (If recovery is needed) Asynchronous Phase Setup Time < 2ms Beacon Stop beacon before sending association response PPC may send Beacon with new Next DEVID Data Transfer Phase PPAP PPAP Association Response Beacon Beacon Beacon Access Slot PPC Disassociation Request Device Association Request SIFS or RIFS RIFS SIFS Stk-Ack Slide 15 Submission Itaru Maekawa, et al.

  16. September, 2015 DCN: <15-15-0663-02-003e-proposal-for-ieee802-15-3e-mac-aggregation-retransmission> Ping-Pong Transmission in Synchronous Phase Ping-Pong Transmission with SIFS CSMA/CA is not used Sub Frame Sub Header MAC Header PHY Header HCS HCS FCS DEV.A DEV.B Sub-F#N+4 Sub-F#N+3 Sub-F#N+2 Sub-F#N+1 ACK#M SIFS SIFS Sub-F#M+4 Sub-F#M+3 Sub-F#M+2 Sub-F#M+1 ACK#N+4 Time #1 DEV.A DEV.B ACK#M+4 Sub-F#N+6 Sub-F#N+5 ACK#M+4 SIFS SIFS SIFS SIFS ACK#N+6 Sub-F#M+6 Sub-F#M+5 ACK#N+6 Time #2 Data Error DEV.A DEV.B Sub-F#N+10 Sub-F#N+9 Sub-F#N+8 Sub-F#N+7 ACK#M+6 SIFS SIFS Sub-F#M+9 Sub-F#M+8 Sub-F#M+7 ACK#N+8 Time #3 Buffer Full To distinguish Data Error or Buffer full Buffer Full Flag one DEV.A DEV.B Sub-F#N+12 Sub-F#N+11 Sub-F#N+10 Sub-F#N+9 ACK#M+9 SIFS SIFS Sub-F#M+13 Sub-F#M+12 Sub-F#M+11 Sub-F#M+10 ACK#N+10 Time #4 Slide16 Submission Itaru Maekawa, et al.

  17. September, 2015 DCN: <15-15-0663-02-003e-proposal-for-ieee802-15-3e-mac-aggregation-retransmission> Synchronous Phase to/from Asynchronous Phase Dev takes recovery process when it lost synchronization CSMA/CA is not used Sub Frame Sub Header MAC Header PHY Header HCS HCS FCS RIFS(B) >> RIFS(A)>>SIFS,ACK To avoid repeated collision DEV.A DEV.B Sub-F#N+6 Sub-F#N+5 ACK#M+4 SIFS SIFS Sub-F#M+8 Sub-F#M+7 Sub-F#M+6 Sub-F#M+5 ACK#N+6 Time #1 Header Error RIFS(A) DEV.A DEV.B ACK#M+8 Sub-F#N+10 Sub-F#N+9 Sub-F#N+8 Sub-F#N+7 ACK#M+8 SIFS SIFS SIFS RIFS(B) RIFS(B) Sub-F#M+10 Sub-F#M+9 ACK#N+6 ACK#N+6 ACK#N+6 Time #2 Recovery Process: Asynchronous Phase DEV.A DEV.B ACK#M+10 Sub-F#N+12 Sub-F#N+11 Sub-F#N+10 Sub-F#N+9 Sub-F#N+8 Sub-F#N+7 ACK#M+10 SIFS SIFS SIFS ACK#N+12 Time #3 RIFS(A) RIFS(A) PHY Error DEV.A DEV.B ACK#M+12 ACK#M+12 ACK#M+12 SIFS ACK#N+12 Sub-F#M+14 Sub-F#M+13 Sub-F#M+12 Sub-F#M+11 ACK#N+12 ACK#N+12 RIFS(B) Time #4 Recovery Process: Asynchronous Phase Slide17 Submission Itaru Maekawa, et al.

Related


More Related Content